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THE ZONAL METHOD: A PRACTICAL
SOLUTION METHOD FOR RADIATIVE
TRANSFER IN NONISOTHERMAL

. INHOMOGENEOUS MEDIA

Wilter W. Yuen and Ezra E. Takara

ABSTRACT

This is a comprehensive review of the zonal method. In addition to presenting the
fundamentals of the method, sufficient details and numerical data are included so that this
work can serve as a “user guide” of the method for practical applications. A review of the
mathematical properties of the exchange factor indicates that the traditional “diffusion
approximation” of radiative heat flux when expressed in finite difference form is in error
even in the optically thick limit. [llustrative examples are presented to show the capability
of the zonal method in simulating radiative beat transfer in inhomogeneous, nonisothermal
media, including the effect of opaque obstructions. The method is extented to become the
generalized zonal method (GZM) for applications in anisotropicaily scatiering media.
Numerical examples with small number of grid points are presented to demionstrate the
capability of the method. With advances in paraliel computing and large memory data
storage and retrieval, GZM has excellent potential of becoming a practical approach for
the analysis of radiative heat transfer in practical engineering systems.

NOMENCLATURE

absorption coefficient
area
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effective bandwidth

wide band correlation parameter, Eq. (34)
wide band correlation parameter, Eq. (33)
wide band correlation parameter, Eq. (33)
wide band correlation parameter, Eq. (33)
wide band correlation parameter, Eq. (35)
dimension of cube-square system
blackbody emissive power

volume fraction

normalized volume-volume exchange factor

sum of normalized volume-volume exchange factor

normalized volume-area exchange factor

normalized exchange factor between parallel square areas
normalized exchange factor between perpendicular square areas

exchange factor between V;and V;
exchange factor between V, and 4,
irradiation

extinction coefficient, also complex index of refraction

absorption mean beam length
number of volume elements in an enclosure
real index of refraction

number of area elements in an enclosure, also particle number density

normal unit vector

pressure of absorbing gas, Eq. (36)
pressure of broadening gas, Eq. (36)
effective pressure, Eq. (36)

heat flux

heat transfer

absorption cross section, Eg. (37)
extinction cross section, Eq. (37)
radial distance, Eq. (2), also particle radius
radial vector :
radial distance parameter

radius of furnace, Figure 18
distance, Eq. (4)

exchange factor between A; and A;
exchange factor between A; and V;
heat generation

femperature

volume

radiosity

coordinate

distance parameter

coordinate
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Y distance parameter
z coordinate
Z distance parameter
Greek
£ emissivity, also emittance
T dimensionless distance coordinate
8 angular variable
A wavelength \
V¥ wavenumber :
o) angular variable
D phase function
) average phase function
p” bidirectional reflectivity
p density
p .average reflectivity
T optical thickness, Eq. (3), also transmittance
® scattering albedo
Subseript
0 reference value
a average
g 2as
i index for volume (area)
J index for volume (area}
m medium
patticle
t total
tot total
w wall

1 INTRODUCTION

In the analysis of high-temperature engineering systems such as industrial furnaces,
the need for an efficient and accurate solution method for radiative heat transfer in
participating media is well known. However, after much effort over the last 50 years,
the issue of developing such a solution method for radiation heat transfer is still not
completely resolved. For the practicing engineer, the quantification of the effect of
radiation heat transfer in *“real” engineering system within an acceptable degree of
accuracy is still considered a difficult task.
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In general, the existing solution methods for radiative heat transfer can be classi-
fied into two groups, each with its own difficulties and limitations. First, there is a
group of solution methods that consider radiative transfer as a diffusion process {(e.g.,
the various differential methods and their modification, P-N method and multi-flux
methods). Although these methods have the advantage of computational simplicity,
their acouracy is highly uncertain because the formulation is inaccurate both in the
optically thin and thick limit. In an optically thin system, radiative transfer strongly
depends on geometry and cannot be simulated as a diffusion process. As shown in
Section 2, the traditional “diffusion” formulation of the radiative heat flux is incor-
rect, even in the optically thick limit. The second group of solution methods model
radiative heat transfer by simulating “exactly” the geometrical effect of photon
transport. The discrete-ordinate method, the Monte Carlo method, and their modifi-
cations are examples of such an approach. However, whereas these methods are
effective in simulating radiative transfer in the optically thin limit, they are time
consuming (even by standard of modern supercomputers) and impractical for appli-
cations in “real” engineering calculations. It should be noted that because of the
highly spectral-dependent and band-like behavior of gaseous absorption, an accurate
simulation of radiative transport in a combustion medium requires a sofution method
that is accurate and computationally efficient over the complete range of optical
thickness. Indeed, the lack of such a solution method is probably one of the main
obstacles to the implementation of many recent radiation-related research innova-
tions to practical engineering systems (e.g,, soof-laden flame for high emissivity/
absorptivity, high emission porous burner, the use of laser in material processing,
etc.). For practicing engineers, the estimate of the effect of radiation in “real” system
remains “too complicated” and “too imprecise”.

The objective of this work is to present a comprehensive review of the zonal
method and to show that it is a suitable method for analysis of radiative heat transfer
in practical engineering systems. The method, developed by Hottel and co-workers
[1—4] over the last 40 years, has not received much attention from the research
commumnity because it was originally proposed and generally perceived by many as
a method of calculating radiative exchange involving an isothermal gas, not as a
method of solution to the equation of radiative transfer. Indeed, in some recent
textbooks on radiation heat transfer, the zonal method was either totally ignored [3]
or mentioned in the context of “engineering treatment of radiative heat transfer in
enclosure” [6] and separated from the discussion of solution methods for the equation
of radiative transfer.

Another possible explanation on the lack of attention on the zonal method is the
perception that it is computationally intensive, particularly in the evaluation of the
required exchange factors. The method is also perceived as not applicable for
scattering media and difficult to apply to combined mode problems and/or nongray
problems. Whereas some of these perceived difficulties are real and have not been
completely resolved, much improvement has been attained in recent years due to
advances in computational power and an improved understanding of the mathematics
of the zonal method. The present work intends to review such advances and to give
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an up-to-date perspective on the capability of the zonal method as & computational
tool for radiative heat transfer in practical engineering systems.

The present review and discussion of the zonal method is organized into six
separate sections. In Section 2, the definition and the mathematical properties of the
zonal exchange factors are reviewed. A set of “generic” normalized exchange factors
are shown to be applicable for analysis of three-dimensional radiative heat transfer
in inhomogeneous media (note that in this work the term “inhomogeneous media”
means media with nonuniform radiative properties). Based on the mathematical
behavior of these factors, a concept of “radiation length” is introduced to account for
the increasingly “localized” effect of radiative heat transfer in media of finite optical
thickness. This concept is shown to be effective in reducing the computational
complexity. In the optically thick limit, the traditional diffusion approximate ap-
proximation for the radiative heat flux is shown to be inaccurate. In Section 3,
equations of energy balance based on the zonal method are presented. A network
analogy is shown to exist and the method is demonstrated to be applicable for three-
dimensional absorbing, emitting, and isotropically scattering media. Solutions to
nongray problems are generated by integration of tabulated gray solutions covering
the range of optical properties. This method is shown to be particularly effective if
the nongray region is confined to a finite number of localized subvolumes. Com-
bined-mode problems are observed to be most effectively solved by parallel compu-
tation. In Section 4, results of some sample calculations are presented to demonstrate
the capability of the method. In Section 5, an extension of the zonal method to
anisotropically scattering media is discussed. Some approximate results are pre-
sented and the computational requirement for a more detailed solution is discussed.
Finally, 2 conclusion to the present review is presented in Section 6.

It is important to note that the present review was written to be more than a
description of the “fundamentals” of the zonal method. Sufficient details and numeri-
cal data are included so that this work can also serve as a “user guide” to the zonal
methed for practical applications.

2 THE MATHEMATICS OF EXCHANGE FACTORS

The concept of exchange factors (also called direct-interchange areas) was introduced
by Hottel and co-workers [1-4] in their original formulation of the zonal method. In this
review, some key concepts and properties of these factors, partticularly those that are
important for the application of the method in inhomogeneous media, are discussed.
These results are the cumulation of contributions from many researchers [1-4,7-11].

2.1 Definition and the Concept of “Generic” Exchange Factor

Physically, the exchange factor between two volume elements, V, and V; represents
the energy radiated from V; and “extinguished” (i.c., absorbed and scattered) by V.
Mathematically, it is written formally as
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and T is the optical thickness between the differential volume element dV, and dv;
given by

T = fj k(s)ds 3)

i
with
=7 -7 (%)

and the integration is performed along a straight line extending from 7 to 7,
In a similar manner, the exchange factor between a volume element V, and an area
element A, and that between two area elements A, and A, are given, respectively, by
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where 7, and #; are unit normal vectors of area element dA, and dA;

The numencal evaluation of Egs. (1), (5) and (6) is complex if the integrand has
a singular point (r = 0). This arises in the exchange factor for a volume zone to itself
(self-self exchange factor; g;g,) and exchange factors between adjacent zones. The
proper evaluation of the self-self and adjacent zone exchange factors is necessary to
model the radiative transfer to the other zones ih the enclosure and thus enable an
accurate solution. As the optical thicknesses increase, the self-self and adjacent
factors becorne more important, while computing them becomes more difficult. This
is one of the primary difficulties of the zonal method.

Over the last 20 years, the understanding of the analytical behavior of these
exchange factors has been improved significantly {7-11]. Together with the in-
creased computational power and storage capacity associated with modem compu-
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ters, the difficulty associated with the evaluation of exchange factors has been
resolved. Specifically, a “generic” set of exchange factors applicable to most prac-
tical geometries of interest can be tabulated. For practicing engineers, these tabulated
values constitute a convenient and useful set of numerical data based on which the
effect of radiative heat transfer can be estimated.

A useful set of “generic” exchange factors are those for a cube-square system in
which all volumes are cubes and all areas are squares with both the cube edge and the
squa.ré side designated as D. As noted by previous investigators {2,11], all enclosures
of industrial importance can be adequately approximated as a cube-square system.

For cubical volumes with geometry as shown in Figure 1, and, assuming that the
extinction coefficient within a volume zone is constant, Eq. (1) can be reduced into
the following normalized form
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where k,; is the average extinction coefficient between V, and V; given by
T 1Y o
. = — = = k(s)ds (8
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In Eq. (7), 0 is the normalized distance given by
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Figure 1 Geometry of the two cubical volumes for the exchange factor g:g,.
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Similarly, for geometry as shown in Figure 2, the normalized expression for g; is
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In the evaluation of s;s, there are two possibilities. For two parallel areas as shown
in Figure 3, it is
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Figure 2 Geometry of the cubical volume and square for the exchange factor g5,
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Figure 3 Geometry of the two parallel squares for the exchange factor s,

and for two perpendicular areas as shown in Figure 4, it is
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It is important to note that with k, ; interpreted as the average extinction coeffi-
cient as given by Eq. (8) varies among the different lines of sight connecting the two
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Figure 4 Geometry of the two perpendicular squares for the exchange factor 55,



elements. The evaluation of these normalized factors with &, ; treated as constant is
thus an approximation when D is finite. However, as D -» 0, the different lines of
sight become increasingly “identical” and these factors are “exact”. Tabulated values
of the four normalized exchange factors for some discrete values of optical thick-
nesses and geometric factors are presented in Appendix A. A summary of the
evaluation procedure is also included for the convenience of additional tabulation, if
needed, by the reader.

2.2 Properties of “Generic” Exchange Factor and the Concept of
“Radiation Length”

The “generic” exchange factors have some mathematical properties that can lead to
important simplification for practical applications. For media with finite optical
thickness, these factors can be used to illustrate the degree of localization of the
radiative effect. For example, the absorption of emission from a cubical element by
its neighboring cubical elements within a distance L can be characterized by the
following summation factor

L
}*;&,(kD,sz Z Foo (KD, My, My oMz ) {13)
‘Flgﬁ"f_%
with
M = (g + np + n3) (14)

Physically, F,,, represent the “normalized” fractional extinction by cubical ele-
ments within a distance L of the emitting cube. Because the emitted energy must be

extinguished by all cubes, F,,_, is expected to have the following limiting behavior
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The mathematical behavior of F,,, as a function of kD and £ is shown in Figure 5.
As kD increases, F,,, approaches its limiting value quickly. Direct examination of
numerical data shows that for &1 2 2, energy conservation can be achieved to within
0.1% by summing exchange factors with % < 3.75. Mathematically, these results
suggest that in a zonal caleulation, direct radiative exchange between two cubical
elements can be ignored when 4D 2 2 and f; > 3.73, or when the optical distance
between the two cubic elements is greater than 7.5.

The above result is consistent with the “radiation length” concept originally
proposed by Yuen and Ma [12]. Specifically, based on results of three one-dimen-

sional calculations, it was concluded that the radiative exchange between nonadja-

e

pe

e

i s g

.

!j!i]ll;lllllllll!l

10

Figure § Mathematical behavior of Fy, .

cent volume elements can be ignored if the optical distance between them is greater
than 7.5. Direct comparison between the exact zonal results and the zo.nal rgsults
generated with the radiation-length concept for two of the th.ree lone-dimensmnai
test problems generated in this previous work (12} are showr} in Figures 6a and 6b,
This concept can be used to reduce the numerical complexity of the zonal calcu-
lation. Even though the numerical examples are presented only for homogeneons
media, the “radiation-fength” concept is expected to be applicable for general inhomo-
geneous media. o

Another important mathematical property of the exchange factor is ﬂlussraFed by
the behavior of the exchange factor between adjacent volume elements. Phys;lcaﬂy,
a finite nonscattering volume element becomes a black body emitter in Fhe opf:lcally
thick limit. For two adjacent nonscattering finite volume elements of dimension }?,
the optically thick limit of the radiative heat transfer {asglming that one volume is
emitting with emissive power E, and the second volume is *cold” at zero degree) is

thus given by

lim Q = E,D* (16)
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This suggests the following limiting behavior for F,,
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T.he accuracy of Egs. (16) and (17) are confirmed by numerical data presented in
Figure 7.

Eq.& ('16) and (17) illustrate an important misconception about the diffusion limit
of radiative heat transfer. In practically all of the existing literature on radiation heat
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Figure 7 Comparison between F(;D,2,1,1} and the two limiting expressions, Egs. (17} and Eqgs. (20).

transfer [5,6], the radiative heat flux (for example, in the x direction) in the diffusion
limit is always written as

g=- =t (18)

and, for numerical application, expressed in the following finite difference form

4 E(x+Ax)- E(x) (19)
3k Ax

q:

Utilizing Eg. (19), the “diffusion” approximation of the normalized exchange factor
between two adiacent volume elements becomes

4

e 2
DT (20)

im F, ,(kD,2,1,1) =
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Eq. (20) is also plotted in Figure 7 for a direct comparison with the exact result.
Eqs. (19) and (20) are clearly in error as they do not approach the correct physical
limit as described by Eqs. (16) and (17). The fundamental difficulty can be attributed
to the volumetric nature of radiative emission and extinction. Specifically, Eq. (18)
is derived for two discrete points in the limit of large optical thickness between these



discrete points. In the evaluation of radiative exchange between adjacent volume
elements with finite dimension, on the other hand, the radiative heat transfer is the
summation of radiative exchange between many discrete subvolumes within the two
volume elements. Because two adjacent volume elements share a common interface,
there are always discrete subvolumes for which the diffusion approximation (Eq.
(18)) fails even in the limit of k — oo, In fact, the radiative exchange between
subvolumes near the interface (with essentially zero distance between them) domi-
nates the heat transfer in the optically thick limit. The effect is captured by Eq. (16)
and not by Eq. (19).

It is interesting to note that despite the inaccuracy, the finite difference equations
generated by Eq. (19) for a one-dimensional planar system is identical to those
generated by the zonal method in the optically thick limit. This explains the many
“agreements” reported in the literatare between the diffusion approximation and the
“exact” results. Indeed, the need to introduce a temperature slip and to apply a separate
heat balance condition at the boundary in the mathematical solution based on the
diffusion approximation can be attributed directly to this physical inconsistency.
Unfortunately, the diffusion approximation is often used by the practicing engincering
community as a “first check” of the radiation effect. This has led to many erroneous
underestimates of the effect of radiation heat transfer in practical engineering systems.

2.3 Summary

In summary, the evaluation of exchange factors needed for the zonal method is 2
“solved” problem because of the improved mathematical understanding and the
increased computational power and storage associated with modermn computers. A set
of “generic” normalized exchange factors for a cube-square system are presented.
They are applicable for inhomogeneous media and most practical enclosures of
industrial importance.

Two Important mathematical properties of the normalized exchange factor are
identified. First, a concept of “radiation length” is effective in illustrating the local-
ized nature of radiative transfer in the limit of large optical thickness. Numerically,
this length is estimated to be about 7.5. The radiative exchange between disjoint
volume elements with optical distance greater than 7.5 can be ignored without
affecting the accuracy of the numerical solution. Second, the commonly accepted
diffusion approximation of radiative heat flux is shown to be inaccurate even in the
optically thick Hmit. It underpredicts the radiative heat transfer and thus can lead to
an erroneous underestimate of the importance of radiative heat transfer in practical
engineering systems.

3 MATHEMATICAL FORMULATION

One of the attractive features of the zonal method is the simplicity of the governing
equations. For an absorbing, emitting, and isotropically scattering medium, the
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mathematical formulation is formally equivalent to that associated with the analysis
of an electrical network. The basic governing equation is in the form of a matrix
equation. The matrix elements are expressed in a systematic repeatable manner that
can be easily adapted into a computer program. Because the matrix is “dense”, a
primary difficulty of the zonal method has been the intense computational effort and
large storage requirement associated with the matrix inversion (particularly when the
number of volume and surface elements is large). However, with the rapid advance
achieved in modern computational technology, this difficulty is becoming less sig-
nificant and the zonal method can now be considered a practical solution methed.
Tn this section, the electrical network analogy is first presented in Section 3.1 to
illustrate the simple physics of radiative exchange and its mathematical symmetry.
The formal development of the governing equations is presented in Section 3.2.‘The
methodology for extending the zonal method to nongray problem, together with a
discussion of the usage of zonal method in combined mode problem, are presented
in Section 3.2. Extension of the method to anisotropically scattering media is de-
ferred until a later section {Section 3). ‘

3.1 The Network Analogy

The physical basis of the network analogy is that for both diffuse surface and
isotropically scattering volume elements, the emitted and reflected (or scajtte'red)
intensity leaving each element are isotropic. This leads to the concept of “radiosity”,
W, and W,,, which are related to the “outgoing” intensity by

¥ = intensity (emission pius reflection) leaving surface A;

3‘%‘- = intensity (emission plus scattering) leaving volume V;

These radiosities are responsible for the radiative exchange between volume (area)
elements with the appropriate exchange factor playing the role of a “resistance”.
Because the intensity leaving a surface (or volume) element consists of both the
emitted and reflected (or scattered) intensity, the radiosity is a function of the
emissive power and the radiative properties as shown in the next subsection.

Schematic representations of the network analogy for a surface elemnent 4; and 2
volume element V, are shown in Figures 8 and 9, respectively. Specificaily,‘the
analogy between electrical network and radiative heat transfer in an absorbing,
emitting, and isotropically scattering medium is

E,; = internal potential of area A,

W, = external potential of area A,

=% = internal resistance of surface A,
i

E,,; = internal potential of volume V;



W, ; = external potential of volume V;
w%’:“gj = internal resistance of volume V,
&= resistance between surfaces 4; and A,

gl

55 = resistance between surface A; and volume V;

75 = Tesistance between volume V; and V;

1t is important to note that the network analogy does not require the assumption
of a homogeneous medium. If the variation of radiative properties between two
elements is accounted for in the evaluation of the exchange factor, as discussed in
Section 2. The analogy is applicable to any enclosure containing an absorbing,
emitting, and isotropically scattering medium.
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Figure 9 Network representation of a velume element V.

3.2 The Governing Equations

For the development of the governing equations, it is useful first to introduce the
concept of imadiation, H; and H,,, for a surface element A, and a volume element V,
Their physical interpretations are

% = average intensity incident onto surface A;

Zat = average intensity incident into volume V
The consideration of energy balance at the surface element and volume element

yields the following relation between the emissive power, radiosity, and irradiation

W, = gk, + (1‘““ 8,.)1‘1’,- (1)

i



Q = AW, ~ H) = ;ﬁ(ﬁm - W) (22)

W, ={-w)E, +oH,; 23)

S.ﬁ4kAV(W.mH)=4kV(1_w"J(E -W) (24)
& (R g o i G)[- bg,i i

The source terms Q; and S, are the net radiative heat loss from surface A; and net heat
generation in volume V). They are analogous to “current” in an electrical network.

A second set of equations relating the different radiosities are generated by
consideration of radiative exchange. Specifically, for an enclosure with N surface
elements and M volume elements, the irradiation to a surface A; and-a volume V, are
given by

AH, Z Z(s,-g,- W, 25)
je=t1
N M

4kiv:‘Hg.z’ = Z(gisj)w} + z(gigj)%,j (26)

j=1 j=1
Using the following summation rules for the exchange factor

N M

A= D fss) + D [se) @27)

j=t j=1

4k, = Z gs;) + 2 (2:,) (28)

Egs. (25) and (26), together with the first half of Egs. (22) and (24) can be combined
to vield

M
0= D o)W - W)+ D (s, ) (W - W) @9
=1

M

S = i(gfsf)(“@i - V’?) + Z(S’sgf)(wés - Ww‘) (30)

j=1 j=1

Egs. (21) to (30) constitute the complete set of mathematical relations for the zonal
method. In general, either Q, (S, ) or E,; (E;, ;) are specified on each surface (volume)
element. Bgs. (21) to (30) can be readily combined to yield the following generai
matrix equation for the unknown radiosity vector W (W, W,, ..., Wy, W, ,, W,

Wg,M)
W=XJ+¥W (3L

Where X is a NM by NM diagonal matrix whose components are functions of €;, @,
k., A; and V; and ¥ is a NM by NM “full” matrix whose components are the various
exchange factors. The components of the source vector J are either specified emis-

sive power or surface heat loss (volumetric heat generauon) The solution to Eq. (3 D
can be obtained by matrix inversion.

3.3 Application to Nongray Problems and Combined Mode Problems

Over the years, the inability to provide accurate quantitative analysis of radiative
transfer in nongray media has been a primary obstacle in practical applications. A
survey of the existing works show that there ‘are two geperal approaches to the
nongray problem. First, a great deal of effort has been exerted to identify the
appropriate “mean” absorption coefficient {e.g., Planck mean, Rosseland mean, efc.}
to extend the gray analysis to nongray applications. The success of these efforts,
however, is quite limited, particularly for gaseous media. The second approach is to
perform a direct line-by-line integration of the gray result. In general, this approach
is considered inappropriate for practical applications because of the intensive com-
putational requirement.

Even with the advance of modern computers, a line-by-line integration of the gray
result using the “exact” absorption coefficient of gases is still extremely intensive
computationally and probably not suitable for practical applications. However, for many
practical engineering problems, particularly in combustion, there is no need to simulate
the detailed line structure, and it is sufficient to nse approximate expressions that exhibit
the correct band-like behavior of gaseous absorption. The narrow-band fixed-line-spac-
ing model [13] is an example of such approximation. Based on this approximation, the
extension of the zonal rethod to nongray problem can be readily achieved by numerical
integration of tabulated gray results. For a homogeneous mediur, a schematic of the
approach is shown in Figure 10. In a series of recent work [14-16], this approach is shown
to be computationally efficient and accurate in generating heat transfer results in homo-
geneous nongray absorbing, emitting, and isotropically scattering media. If the compu-
tational domain consists of only 2 finite number of nongray subregions, the approach can
be readily extended and is computationally feasible. Extension to general nongray



inhomogeneous media (or when the number of nongray subregions becomes large) is
quite promising in view of the rapid advances achieved recently in large-scale computa-
tional data storage and retrieval.

It is important to note that the schematic in Figure 10 represents, fundamentally,
an efficient way to “decouple” the geometric and optical aspects of the radiative heat
transfer in practical systems. For a specific furnace in which the nongray subregions
can be identified, the zonal calculation is needed to perform only once to generate the
relevant heat transfer data over the expected range of radiative properties within each
subregion. The data contain all the geometric effects that are characteristics for the
considered furnace. Once these data are generated, a practicing engineer can then
perform the spectral integration using the relevant radiative properties to obtain the
required heat generation or temperature distribution for a specific application (either
in a stand-alone or combined-mode calculation).

Historically, the zonal method has been perceived as difficult to use in a com-
bined-mode problem. However, with the advance in modemn computers and the
possibility of parallel computing, this issue is close to being resolved. Because
computer codes for conduction/convection analysis are readily available, the most
effective way to deal with the combined mode problem is to use parallel computing
to couple a conduction/convection analysis with a radiation analysis (e.g., using the
zonal method), as shown schematically in Figure 11. There is no need for any
additional research effort for the combined mode calculation except to resolve the
varions efficiency and accuracy issues related to the parallel computing process.

3.4 Summary

The goveming equations for the zonal method is presented. These equations are appli-
cable for general nonisothermal, inhomogeneous, absorbing, emitting, and isotropically
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Figure 1¢ Schematic of a nongray calculation using the zonal method.
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Fignre 11 Schematic of a parallel computation algotithm using the zonal method.

scattering media. The formulation is analogous to the analysis of an electrical network.
The nongray effect can be simulated by direct integration of tabulated gray resulfs
generated by the zonal method. This approach is feasible computationally when the
computational domain consists of only a small finite number of nongray subregion. When
the number of nongray subregion is large, the method requires the development of an
efficient scheme for large-scale data storage and retrieval. The combined-mode problem
is observed to be most efficiently solved by parallel computation using the zonal method
as one component of the parallel processes. '

4 ILLUSTRATIVE EXAMPLES OF APPLICATIONS

Examples are presented in this section that demonstrate the capability of the zonal
method as described in the previous sections. The first example illustrates the
rongray solution approach in a homogeneous, isothermal scattering medium. The
second example illustrates the nongray solution approach in a three-dimensional
enclosure with one nongray subregion. The third set of examples illustrates the usage
of the zonal method to simulate the effect of a highly absorbing region (i.e., an
opaque obstruction). The relative accuracy of using interpolated values from the table
of generic normalized exchange factors in Appendix A in a radiative exchange
calculation is also demonstrated.

4.1 Optical Properties Used in the Nongray Examples

In the first two examples, the nongray medium is assumed to be a mixture of gas and
soot. For the gaseous absorption coefficient, the narrow-band fixed-line-spacing
model [13], which is known to be an effective engineering approximation for the



nongray spectral absorption behavior for most common gases, is utilized. The gaseous
absorption coefficient (suppressing the subscript A for simplicity) is given by

pC?sinh(nB’ P,/2)
a, = 32
¢ cosh(nBzPe / 2) ~ cos(2mv*/d) 2

where v* is the wavenumber measured from the center of the band, C*(v,T), B*(v,T),
d, and Pe are specified in terms of isothermal gas correlation parameters as

Ct = {G1G)e™ e (33)
B = CI/{4C,C) (34)
d = d,G(T;), T, = 100K (35)

B =R+ bPA)/PO]n, P, =1 atm (36)

with P, being the partial pressure of the absorbing gas and Py the partial pressure of
the N, broadening gas. The gas correlation parameters, Cy, C,, C;, b and n are defined
for various conumon gaseous species (e.g.. CO,, H,0, CO, and CH,} in standard
references [17]. '

For soot particles, the optical properties of carbon sphere is used, The absorption and
extinction cross-section are evaluated using Mie Theory [18]. Specifically, for the set
of index of refraction (n—ik) data for graphite carbon [19] as shown in Figure 12, the
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Figure 12 Measured data on the complex index of refraction (n-ik) for carbon.

absorption efficiency, O, the extinction efficiency, Q. and scattering albedo, @ =
1- g‘;”‘ are calculated for different particle sizes utilizing computer programs

>
it

provided in standard references [20]. The absorption coefficient, a,, and extinction

coefficient, k,, can be generated from these efficiency factors by

a, = NertQ

abs kp = NanQexl (37)
with N being the particle’s number density and r the particle radius. Typical numeri-
cal results are presented in Figure 13. It can be readily observed that the effect of
scattering is quite significant when the particle radius is greater than 1 pm.

4.2 Nongray Radiative Transfer in an Isothermal Absorbing,
Emitting, and Isotropically Scattering Medium (Concept of
Absorption Mean Beam Length)

Because of the effect of scattering, the radiosity distribution in an isothermal enclo-
sure is nonuniform and must be generated by a full pumerical solution based ot the
zonal method, The detail of the solution is presented elsewhere [14-16]. For the
convenience of physical interpretation and a direct comparison with the emittance of
an isothermal nonscattering enclosure, the heat transfer results are expressed in terms
of an absorption mean beam length (AMBL), L, as

Z,

alTpmm) =BG )i- ] (38)

For a specific heat flux of interest, ¢,(7,.a;,w)), AMBL is the radius of an equivalent
purely absorption hemisphere with the absorption coefficient, a,, such that the heat
flux at the center of its base is jdeatical to the actual heat flux. The subscsipt A is
retained in the definition of AMBL to emphasize that it is a function of wavelength
because of its dependence on optical properties.

Numerical data of AMBL. for a parallel slab radiating to its boundary are presented
in Figure 14. For 2 gas/particle mixture, the total emittance can be expressed as &
function of AMBL by

€y = £, + T,E, (39)

4

with

1 - = aFonn| %09, ) -
g, = o s Eb_l(z;)(i- g ka2 ]dk (40)

and
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ey = GT;J; Eb,l("[;g)e
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Physicaily, &, and 7 €, represent the gas and particle coniributions to the total mixture
emittance, respectively. Because of the band-like abscrption behavior of the gas, Eq.
(41) can be further simplified by evaluating the AMBL at the center of each band and
treated as a constant in the spectral integration across the band. This leads fo

1 =g Lab| Gp 2 Pp,
e = o 2 (L) T
3

X AL (a3, ) (42)

where A, is the center of the ith band and A, is the effective bandwidth given by

Xi [Lab (ap,lz ® P )}

~ag 3 kb {p, 3, Op Ay
:j e (43)
fthband



Eq. (42) demonstrates the effectiveness of the AMBL concept. Because f{‘ for most
common gases can be readily evaluated using established wide band correlations
[17], the gaseous contribution to the total emittance in a multidimensional enclosure
can be estim-ated from the AMBL results such as Figure 14 and one-dimensional
band correlations,

To demonstrate the accuracy of the AMBL approach, the total mixture emittance
and particle-attenuated gas emittance for a 1-meter slab of CO,fparticle mixture at a
pressure of 1 atm are calculated by “integration” using Egs. (40) and (41) and by
“constant AMBL” using Egs. (40) and (42). In the evaluation of Eq. (42), the Edward’s
wide band correlation [17] is used in the tabulation of the effective bandwidth, Z, The
particle radius is varied from 0.1 pim to 10 pm to capture the effect of both a highly
scattering particle cloud (with 10 pm radius) and a nonscattering particle cloud (with
0.1 pm radius). The particle concentration in each case is also varied to cover the range
from a particle-dominated emittance (large concentration) to a gas-dominated emit-
tance (low particle concentration). Results are presented in Figures 15, 16, and 17.
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Figure 15 Comparison between the constant AMBL approach and the direct integration approach of the
particle attenuated gas emittance and total emittance for a mixture with particle radius of 0.1 gm (N is the
particie concentration in 1/m®). ’
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Figure 16 Comparison between the constant AMBL approach and the direct infegration approach {?f the
particle-attenuated gas emittance and total emittance for a mixture with particle radius of 1.0 um (Nis the
particle concentration in 1/m?).

AMBL is clearly an effective parameter in summarizing the cornbined cffecs‘ of
the enclosure’s geometry and scattering on the mixture’s emittance. For a specific
furnace of interest, AMBL can be tabulated by a zonal calculation and “stored” ag a
furnace’s property. The emittance at arbitrary mixture's condition can then be
calculated directly from Eq. (40) and (42).

4.3 Nongray Radiative Heat Transfer Simulation of a Hi-Rad Burner
in An Industrial Furnace

The motivation of this illustrative example is to study the effect of a Hi-Rad burner on
the melting rate of a “fypical” aluminum remelting process furnace. A Hi-Rad bume}’ is
a plasma-enhanced natural gas buzner that is designed to control the soot conce:ntra'txon
in a flame to increase its radiative emission [21]. The objective of the calculation is to
demonstrate the potential benefit of a Hi-Rad burner in the geometry of an actual furnace.



A schematic of the furnace above the melting aluminum and the expected
location of the flame generated by a Hi-Rad burner is shown in Figure 18, The Hi-
Rad burner is designed to be installed on the side wall at a distance h above the
aluminum surface. In the simulation, the flame generated by the burner is approxi-
mated as a rectangular column of dimension L, X L, extending across the full
diameter of the furnace (i.e., {:; =R2 - igz_). The wall of the furnace is assumed to
be gray, diffuse with cmissivity €, -and at constant temperature 7. The flame is
assumed to be an isothermal gas/soot mixture. The surrounding medium is assumed
to be optically transparent.

The absorption coefficient of gas is given again by Eq. (32). Carbon particles
generated in the flame are assumed to be sufficiently small such that the absorption
behavior follows the Rayleigh limit of Mie Theory. The absorption coefficient is
given by
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Figure 17 Comparison between the constant AMBL approach and the direct integration approach of the
particle-atennated gas emittance and total emittance for a mixture with particle radius of 10.0 pm (N is
the particle concentration in 1/m?).
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Tigure 18 Geometry of the aluminum fumace and flame location.
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with f, = —"-’%Di being the volume fraction of carbon particles in the flame.

This example illustrates ideally the application of the zonal method to an
inhomogeneous medium with the flame being a single nongray subregion (the wali is
assumed to be gray). The AMBLs for the heat transfer to the various locations of the
bottom surface are first tabulated as functions of the optical properties of the flame. The
gray results are then integrated to yield the total heat transfer. The detail of the solution
is presented elsewhere [21]. The effect of the soot concentration on the heat transfer
from the flame, heat transfer from the top wall, beat transfer from the side wall and the
total transfer to the bottom wall are shown in Figures 19 thru 22. The solutions show
the effect of the soot in Himiting the heat transfer from the side/top walls to the bottom



Heat Flux from Top Wall (Tf = 1400 C, Tw = 1800 C)
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Figure 19 Radiative heat transfer from the top wall to the bottom wail at different soot volume fractions.

?vakl, as well as enhancing the emission of the flame. The capability of the zonal method
in simulating these complex three-dimensional effects is quite apparent.
Inasmuch as the important physical parameter in this example is the radiative

heat transfer distribution at the bottom {aluminum) surface, AMBL must be tabu- -

lated both as a two-dimensional function of spatial coordinates at the bottom
surface and of optical properties of the flame. The data storage requirement is much
more significant than that of the previous example. As both the number of nongray
subregions and the level of detail of the heat flux distribution increase, the data
storage requirement for AMBL multiplies rapidly. Thus, advances in large-scale
data storage and retrieval are needed for this approach to be numerically feasible
for general nongray problems. Nevertheless, many practical engineering problems
can be modeled by a small number of nongray subregions, and the present method
is a nseful engineering approach.

4.4 Simulation of the Effect of Obstructions

ji‘he objective of this set of examples is to demonstrate the capability of zonal method
in simulating the effect of an inhomogeneous medium, including the presence of an

- [

gt i

obstruction. The basic geometry is a cubical enclosure. Three separate cases are
presented to illustrate the various aspects of the zonal method.

4.4.1 A Cubical Enclosure in Radiative Equilibrium. In this example, the relative
accuracy of a zonal calculation using interpolated values of the exchange factor
generated by the table of generic exchange factors in Appendix A is assessed. Specifi-
cally, a cubical furnace with black walls and dimension W is considered. The general
geometry of this example and the notation used in the identification of elements for a
§ X 5 x 5 calculation are shown in Figurs 23. In the calculation, the walls with z = 0,
y =0 or x = Whave unit emissive power and the remaining walls are cold. For an optical
dimension of 1.0, normalized exchange factors with kD = 0.2 are required for the
calculation. Numerical data generated by the “exact” normalized exchange factors and
those generated by linear interpolation between exchange factors with kD = 0.1 and kD
= (1.5 are shown in Table 1. The “exact” results are identical to those generated
independently by a previous investigation [10]. Because the change in exchange factors
from kD = 0.1 to kD = 0.5 is quite significant, the agreement between the “interpolated”
and the “exact’” results is quite satisfactory. This comparison readily demonstrates that
a zonal caleulation using the table of generic normalized exchange factor is an effective
approach, particularly for engineering applications.
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Figure 20 Radiative heat transfer from the side wall to the bottom wall at different soot volume fractions.
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Figure 21 Radiative heat transfor from the flame to the bottom wall at different soot volume fractions.

4.4.2 A Cubical Enclosure with a Radiating Flame, In this example, an emitting
and scattering “flame” is situated in the middle of the furnace. Is relative locations
and dimensions are shown in scale by Figure 24. The flame has a square cross-section
of dimension 0.6 Wx 0.6 W and a height of 0.4 W. It is further separated into an inner
and outer section. The inner section has a dimension of 0.2 W 0.2 W and a height
of 0.4 W. The six surrounding walls are identified numerically as shown in the figure.
Calculations are carried out for three sets of optical properties for the flame and the
medium as shown in Table 2. I case a, a nonscattering flame is surrounded by a
nonparticipating medium. In case b, the surrounding medium is an absorbing and
scattering medium in radiative equilibrium. In case ¢, the flame is separated into a
hotter nonscattering inner flame and a cooler absorbing/scattering outer flame sur-
rounded by an absorbing and scattering medium in radiative equilibrium. The emis-
sive power of the inner flame is normalized to be one and the emissive power of the
outer flame in case ¢ is 0.8.

To illustrate the accuracy and convergence of the zonal method, calculations are
carried out for both a 5 x 5% 5 and a 10 x 10 x 10 grid. Exchange factors are generated
from interpolation of the generic normalized exchange factor table in Appendix A. Total
heat transfer to the different walls, O(), net heat loss from the flame, Q,., and the overall
energy balance, Error, for all cases are shown in Table 3. Note that in cases band ¢, 0,
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Figure 22 Toial radiative heat transfer to the bottom wall at different soot volume fractions.
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Figure 23  Geometry and notation used in the example of a cubical furnace in radiative equilibrium.



Table 1 Numerical Data for the Cubical Enclosure Problem,
Values in Parenthesis Correspond to Results Generated By
Interpelation of Data From the Table of Exchange Factors

Emissive power Heat flux
X Ti=1 i=3 i=5 Area Q
5 5 0.105 (0.128) 0.177 (0.200) 0.368 (0.376) 1 0.499 (0.509)
5 3 0.177 (0.200) {.298 (0.317) 0.500 (0.500) 2 0.695 (0.685)
5 1 0.368 (0.376) 0.500 {0.50(0 0.632 {0.624) 3 .822 (0.804)
4 0.290 (0.326)
3 5 0.177 (0.200) 0.298 (0.317) 0500 (0.500) 5 0.481 (0.500)
3 3 0.298 (0.317 0.500 (0.500) 0.702 (0.683) 6 0.176 (0.214)
3 1 0.500 (0.500) 0.702 (0.683) 0.823 {0.800)

15 0368 (0.376)  0.500 (0.500)
1 3 050005000  0.702 (0.683)
11 06320624  0.823 (0.800)

0.632 (0.624)
0.823 (0.800)
0.395 (0.872)

is less than the actual heat loss from the flame because it includes the absorption of the
entission from the surrounding medivm. The parameter Error in the teble is defined by

o0

Error =

The accuracy of the results and the effectiveness of the zonal method in capturing the
essential heat transfer behavior are quite apparent.

4.4.3 A Cubical Enclosure with a Radiating Flame and an Opaque Obstruc-
tion. To demonstrate the capability of the zonal method in simulating the effect of
an opaque obstruction, an obstacle is inserted into the furnace with geometry as
shown in Figure 25. Computationally, the opaque obstruction is modeled as highly
absorbing nonscattering volume eleménts with zero-emissive power. The total heat
transfers to the different wall, the heat loss from the medium, and the overall energy
balance are shown in Table 4. Note that in these cases, O, includes the absorption
by the obstruction (it is treated as part of the surrounding medium) and therefore is
less than the corresponding values in Table 3. As expected, the heat transfer to walls
2, 3, and 6 are greatly reduced due to the shadowing effect. The effect on O(1) and
(4) is much less becanse only a small fraction of the lines of sight between the flame
and the walls are affected by the obstruction. In case a, heat transfer to the lower wall,
((5), is unaffected by the obstruction because the surrounding medium is nonpartici-
pating. In cases b and ¢, Q(5) is slightly reduced because part of the radiation reemitted
by the medium is obstructed. To further illustrate the effectiveness of the zonal method
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Figare 24 Geometry and notation used in the example of 2 cubical furnace with an emitting flame.

in the simulation of the effect of an obstruction, heat transfer distributions at wails 2
and 6 for case a, with and without the obstacle, are compared in Figure 26.

Table 2 Optical Properties of the Three
Regions in the Problem of a Radiating
Flame in a Cubical Enclosure

Inner flame Quter flame Medium

Case W @ E kW w E kW ®
a 2.5 1 25 g 1 4] 0

0
b 2.5 O i 2.5 o 1 05 03
¢ 2.5 G 25 05 08 05 03
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. e . i Table 4 Numerical Data for a Cubical Enclosure with
Enclosur th a R 3
¢ with 2 Radiating Flame. Results a Radiating Flame and an Obstacle. Results Are
‘While Those i i
e Those in Parenthesis Are Generated Parenthesis Are Generated by 2a 5 x 5 x 5 Grid

Bya3Sx5x5Grid

}

Are Generated i ’
re Generated By a 10 x 10 x 10 Grid, l Generated by a 10 x 10 x 10 Grid, While Those in

¥

%

case Q) Q@) XS Q6) 0,  Ermor(%)

Case Q) Q(3) Q(6) Q. Brror(%}

: a 3.167 2.760 7.08% 0.9601 19.89 0.00
a 31m 7085 2027 21.87 .33 3 (3.043) (2665 (7.086) (09821) (1941 (0.00)
G043)  (7.086)  (1.994)  (21.66)  (1.87) ¥ b a008 2706 7297 08627 1977 0.08
b 3139 7313 1806 21356 053 ) ) ’ ) ' y
’ : - i (3.012)  (2.646) (7.316)  (0.8298) (19.47) (0.05)
(3.045)  7.330) (L.791) (2137 (0.33) [ 1.700 1.479 4.075 0.4830 1092 0.05
¢ 1.723 4.085 1021 11.82 0.65 ¢ 1.664 1.455) 4.;_()9) {}.4664) (10'82} {0‘05)
(1.682) (4.118) (1.016) (11.37) (D.08) 7 asen @ @ @ . .
}
: 4.5 Summary
side view ; '
6 i The group of numerical examples presented in this section readily demonstrate the
g flexibility and capability of the zonal method in applications to complex engineering
ey obstruction b problems. Using the tables of generic normalized exchange factor;the computational
) % : requirement for these calculations (both in terms of computer time and data storage)
— NN ;e miimal
1 3 ]
outer flame i 3
: i Wwall 2 with obstruction
;
x
=
N He
i e
_ S
\ E
! E
o
2

Wail 6 - with obstruction

Norratized Flux

Figure 25 Geomeny and notation used in the example of a cubical furnace with an emitting flame and
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P ¢ Tigure 26 Effect of the obstruction on the heat transfer to walls 2 and 6 for case a.



5 EXTENSION OF THE ZONAL METHOD TO
ANISOTROPICALLY SCATTERING MEDIUM:
THE GENERALIZED ZONAL METHOD

The most severe limitation of the zonal method (called the conventional zonal
method, CZM, in the remainder of this section) is the assumption that the volume
radiosity, W, and surface radiosity, W, are isotropic. This restricts the application
of CZM to enclosures with diffuse surfaces and isotropically scattering media. In a
recent work [22], this restriction is removed by the introduction of the generalized
zonal method (GZM).

In this section, a detailed mathematical description of the GZM is presented.
Formally, the GZM can be considered a vector generalization of the radiosity-
irradiation approach utilized by CZM. The basic conservation equations for the GZM
are derived. The concepts of average reflectivity and scattering phase function are
introduced. These concepts characterize the scattering property of the medium and
the reflecting property of the enclosed surface, respectively. Finally, the computa-
tional requirement for GZM is discussed and some approximate results generated
with relatively large grid size are presented to illustrate the capability of the method.

5.1 The GZM Concepts of Radiosity Vector, Average Reflectivities,
and Average Phase Functions

In an anisotropically scattering medium, an effective solution method must account
for the directional dependence of the radiative intensity (and, therefore, the radiosity)
in the mediurm. The fundamental basis of GZM is to let the level of discreteness in
the computation control the level of detail in the simulation of the directional
dependence of the radiosity in the calculation. As the level of discreteness increases,
the simulation of the directional dependence becomes increasingly accurate, along
with the predicted numerical solutions.

Specifically, in an enclosure with M volume zones and N surface zones, the
method assumes that the radiosity from each zone is represented by a vector of NM
components. For example, W;; and W, ; are the average radiosities from area 4; to
area A; and volume V. leewme W;, i and W, are the average radiosities from
volume V; to area A; and volume V, Each component of the radiosity vector is
assumed to be constant inthe evaluation of radiative exchange between elements. As
the number of zones increase the directional dependencies of radiosity will be better
simulated and the accuracy of numerical results will be improved.

Mathematically, the average irradiation incident onto surface 4; and volume V,
(Egs. (25) and (26) for CZM) are now given by

N M

AH, = 3 (s Wi+ D (si8;) Wy i=1N (46)

j=1 j=1

O
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N M
4kVH, = z (g5, Wyt + z (0:8) Wy i=1M @7
=l

j=!

The heat transfers (Egs. (29) and (303) become

M
Q: = i(ﬂ%)( )+ (sig)) (Mg - W) 1= LN @)
j=t Ful
and
N "
Sy = z (3»'31')(%1'.;' - W},gr) + 2 (8;3;)(“’};,gj - Ww-,g,-) i=1LM (49
i=1 i=t

The radiosity vectors W, and W,, are related by the scattering properties of the
medium and the reflective propertzes of the surfaces. The components of W, radiosity
vector of surface zone A, are written as

2 W}crpmj S8y 2%1;%;:; &:;

'kl ’ll

W, = gE,, + j=LN (50

i

and
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W = E’i‘E!:t,i Zulkrpk,rg; 55 + e 2 ngpgllg; 85 J = ]-’M (51}
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The average reflectivities at surface A;, Oy, Py; and P, are defined by
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}vhcre p”(%, 84, 04, By, &) is the bidirectional reflectivity of A; at 7, for radiation
incident in the (B;; ¢ ;) direction and reflecting in the (8, ¢ ;) direction.
Likewise, the components of ng, radiosity vector of volume zone V, are

M
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+ 4’16‘/' < T’Vgig[@g!gzg;(gig;) J = 1!M (56}
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where &, &, and &, are the average scattering phase functions given by
Prsis = (r;. + )
kgtj Cos 9 ;k
Skgl 8, J vida, Ji
() ) .
2r de dVidA, 57
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In the above expressions, ®(cos8y) is the phase function V; at r, for radiation
incident in direction (8, ¢ ;) and being scattered into the (8,0 ) direction. The detailed
derivation of Egs. (53) and (58) are presented in Appendix B. Development of Eqs.
(52), (54}, (57), and (61} are similar.

Analogous to Eq. (31) for CZM, Egs. (46), (47), (48), (49), {50), (51}, {55), and
(56) can be rewritten as a generalized matrix equation for the _generalized radiosity
vector W (composed of the vectors Wl, W, coe s Wy ‘.ﬁ@;, Wz oor s W

{60)

Eé

= XJ +

where X is a diagonal NM by NM generalized matrix with elements that are NM by
NM submatrices. The submatrix elements are functions of g, ®, A;and V. Y is afull
NM by NM generalized matrix composed of NM by NAM submatrices. The submatrix
elements of Y are composed of the GZM average reflectivity factors or average
scattering phase function factors and the CZM exchange factors. Tisa generalized
source vector composed of NM subvectors whose components are the specified
emissive powers or heat fluxes.

From their definition, it is apparent that the average reflectivities and phase
functions satisfy the following reciprocity relations

Pk = Pris (61)
Puiie = Prig (62)
Prict = Parig (63)
D,k = Prgus (64)
ég}lgr}k = é’k.gf,gf (65)
b, =0, (66)

ghgigk gh.gigf

At a volume element V; and relative to an arbitrary surface A, or velume V,, the
average phase functions satisfy the closure relation
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Egs. (46) to (67) represent a complete mathematical description of the radiative
transfer based on the generalized zonal method. The description is completely
general and is applicable to media with arbitrary scattering phase functions and
surfaces with arbitrary bidirectional reflectivities. Even though the method requires
the tabulation of the average phase functions and average reflectivities, which are
complex multidimensional volumetric and area integration, it is important to note
that these tabulations are needed to be carried out once for a given geometry,
scattering phase function, and surface reflectivity. As in CZM, these factors can be
expressed in generic normalized forms that are applicable for general enclosures and
can account for the effect of inhomogenous properties.

5.2 An IHustrative Example of GZM

To demonstrate the effectiveness of the GZM, the problem of radiative equilibrium
in a cubical enclosure containing an anisotropically scattering medium is analyzed.
The specific geometry and coordinate system are shown in Figure 27. The bottom

R S

Figure 27 Geemetry and notation used in the GZM example problem.
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surface {(4g) is black and hot with a unit emissive power, while the remaining five
surfaces are black and cold with zero emissive power. The medium has a linear
amisotropic scattering phase function given by

DBy=1+Pcosd {68)

The number of zones used in the analysis was progressively increased in order to
prove convergence. The first analysis was with one volume zone (n, = 1) for the entire
medium and six surface zones, one for each wall. The next analysis used eight
volume zones (n, = 2; 2 X 2 X 2 grid) and 24 surface zones. The final analysis used
64 volume zones (1, = 4; 4 X 4 x 4 grid) and 96 surface zones. It should be noted that
the complexity of the analysis grows quite rapidly. It is shown later that the one
volurme zone analysis could be done in closed form. The sight volume zone analysis
had 16 unknowns; the 64 zone analysis had 768 unknowns.

The presentation in this section is in two parts. In the first subsection the one-zone
analysis is presented in detail. This illustrates some unique features of the GZM. In
the second subsection, gridsize convergence is shown. More detailed discussion of
the numerical data and the physics of the problem are presented eisewhere [22].

5.2.1 One Zone Analysis. In the one zone analysis the entire medium is treated as
a single volume zone and each wall is a single surface zone. To simplify the notation,
the subscript ¢ is used for the single volume zone. Inasmuch as all surfaces are black,
the radiosity on each surface is known (1 for A and O for the remaining surfaces).
From Eq. (48), the heat transfer at the six surfaces is given below.

Qi = = (5535) - (gst.) ng | 1, R (69)
and

Os =1 —(g5) W, (70

The radiosity components for the gas zone can be deduced from Eq. (55} to yield

W /s 2 .
%-j = {I - m)Ebg + 4ng ((bﬁ-gu"(gsﬁ) + q)g,&f(gg)wg:g) J= 1’ S (71)
and
m ~ A
W, ={l- @)E, + mm(@&g;g(gss) + (Dglg.g(gg)%;g) (72)
)4

E, . the average emissive power of the medium, can be deduced from combining Egs.
(49) and (72} to be
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Eqs. (71) and (72) illustrate that the components of the radiosity vector, Wg,i, are
not identical in general. While this is expected for anisotropically scattering media,
it is true even for an isotropically scattering medium. This is a direct contradiction
of CZM assumption that all components of the radiosity vector should be equal. This
contradiction can be explained both physically and mathematically.

Physically, the imbalance reflects the anisotropic nature of the boundary condi-
tions (unit emissive power at the bottom wall and zero emissive power elsewhere).
For a single volume zone, it is clear that the radiosity components to the top wall and
side walls cannot be equal.

Mathematically, the equations for radiosity components use the scattering factors
to show the effects of geometry and scattering phase function. Note that even for an
isotropic scattering medium, the scattering factor is unity only for a differential

volume element dV, ie.,

(I)j.dgi,k = @gf,a‘gr',k = (Dg,i.dgi,gk = 1.0 (74)

The scattering factors for a finite volume element, V.

«i» Ot the other hand, are unequal
and given by

2 V.
@, .. = i
kgl (ng;c )(gi 5,

v, (75)

J- (sjdg,.)(skdgi)
J o
The difference in exchange factors led to the difference in the radiosity components,
The difference in isotropic results disappears as the number of zones taken in the
CZM and GZM analyses increases. However, for the same number of zones, GZM
is clearly an improvement over CZM even for an isotropic aunalysis.

1t is interesting to note that utilizing the approprate summation rule for ex-change
factors and scattering factors, Eq. {73y in the limit of a cubic enclosure, is reduced to

1
By = (76)
This is the expected result from superposition and the same result as a one zone CZM
analysis. This reaffirms that the difference between CZM and GZM is in the treat-
ment of scattering. From examining Egs. (71) and (72), it is clear that CZM and GZM
are identical if there is no scattering (© = 0).

5.2.2 Convergence. To illustrate their effect on convergence, the optical thickness,
scattering albedo, and scattering phase function were varied. Runs were made for

AT T g

optical thickness L = 0.1, 0.5, 1.0, 2.0, 3.0; scattering albedo @ =0, 0.2, 0.4, 0.6, 0.8,
1: and linear scattering coefficient f = —1, 0, 1. In order to show that GZM is an
effective solution method, gridsize convergence must be shown.

In Tables § to 9, the bottom, side, and top wall fluxes g, = QL% g, = —-Q)/L*% g,
=—Q,/L? for various grids are shown. Results for 0 =1 were chosen because they are
“pure” GZM results; the results are entirely dominated by scattering. The tables show
that the fluxes have converged to within 5% for the bottom and side walls and within
0.015 for the top wall (the top wall convergence is slow because of the small
dimensionless heat flux). For L = 0.1, an optically thin case, only eight volume zones
(n, = 2) ate necessary for convergence. For all other optical thicknesses 64 volume
zones (n, = 4) are required.

Table 5 Convergence Behavior of the Total
Heat Flux Predictions Generated by GZM for an
Optical Thickness of L = 0.1

s qs ) i

B n=1 mn=2 n=% n=2 a=1 n=2

-1 0.9%08 LOOCC 01950 02000 0.1866  0.2000
0.9860  1.0000 02000 02000 01850  0.2000
1 10000  1.OGOD {2017 02000 0.1809  0.2000

Table 6 Convergence Behavior of the Total Heat
Flux Predictions Generated by GZM for an Optical
Thickness of L = 0.5

9 G5 4

{3 nzzz 71224 nz:2 nz-'_*.éi n, = n, W

-1 05016 08995 0.1964 01958 01299 01334
09300 0.9280 0.2004 01999 01422  0.1454
1 09550 09580 02045 02040 01552 0Q.1585

Table 7 Convergence Behavior of the Total
Heat Flux Predictions Generated by GZM for
an Optical Thickness of L = 1.0

D) qs d,

B =2 n=4 n=2 r,=4 nm=2 n, =

-1 0.8299 08248 0.1872 01873 0.0897 0.0917
0.8730 0.8691 0.1943 01945 (0.1046 0.1065
1 05171 09163 02014 02020 ©.1208 £.1239




Table 8 Cenvergence Behavior of the Total Heat
Flux Predictions Generated By GZM for an
Optical Thickness of L = 2.0

qy qs 4

B n=2 n=4 n=2 n=4 ng=2 n=4

T

-1 G7380 07227 01722 01705 0.0537 00516
0 07938 07809 0.1829 01816 Q.0666  0.0648
1 48497 08432 01935 01931 00810 00812

Table 9 Convergence Behavior of the Total
Heat Flux Predictions Generated by GZM for an
Optical Thickness of L = 3.0

73 qs qy
i n, w2 n=4 n,=2 1, =4 n,=2 Howmd
i 0.6809  {.6533 0.1597 0.1573 00389 0.0341

07442 07174 01721 03702 0.0487 00442
I 07978 07834 0.1844 0.1836 0.0596 00571

In.Fi gure 28, the convergence behavior of a pure isotropic scattering (o = 1) GZM
solution (N, = 1, 2, 4) is shown and compared with the corresponding CZM resuits.

Figure 28 Convergence behavior of GZM and CZM for the isotropicaily scattering results.
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These results represent numerical proof of the earlier statement that given the same
number of zones GZM solutions are more accurate than CZM. This increased
accuracy compensates for the increased effort required by the GZM.

Although total heat transfer results for the current illustrative example can be
generated accurately with only 64 zones, solutions with a larger number of zones are
required for more complex problems. Because the number of average scattering
phase function factors and average reflectivity factors increases rapidly with the
number of zones, the practical usage of GZM would require the utilization of parallel
computing and/or advance techniques in large memory data storage and retrieval.
These are areas of active current research. With the rapid advances in the fundamen-
tal understanding of computer science, these limitations are expected fo be readily
overcome in the near future, and GZM can become a practical solution technique for
realistic radiative heat transfer simulation. -

5.3 Summary

The basic mathematical formulation of GZM is presented. The capability of the
method is demonstrated by the solution of a simple three-dimensional radiative heat
transfer problem with anisotropic scattering. While the solution method of GZM is
straightforward, a calculation with small grid size requires the utilization of parallel
computing and some advances in large memory data storage and retrieval in practical
calculations. With the rapid advances in computer science research, these obstacles
are not significant, and GZM has good potential of becoming a practical solution
approach for radiative heat transfer.

6 CONCLUDING REMARKS

A review of the zonal method is presented. The method is shown to be both accurate
and efficient in the analysis of radiative heat transfer in nonisothermal inhomogeneous
medium with isotropic scattering. A set of generic normalized exchange factors are
tabulated. They can be used in problems with general three-dimensional rectangular
geometry. Based on mathematical properties of these exchange factors, the conven-
tional “diffusion” approximation in finite-difference form is shown to be inaccurate.
A concept of “radiation length” is introduced to reduce slightly the complexity of the
numerical implementation. Numerical examples are presented to demonstrate the
capability of the method in simulating radiative heat transfer in inhomogeneous
media, including the effect of opaque obstructions.

For media with anisotropic scattering, the method is extended to become the
generalized zonal method. Solutions with a relatively small number of zones are
presented to demonstrate the capability of the method. For problems that require
small grid size, the method’s capability is limited because of the large number of
exchange factors that must be tabulated and the large size of the resulting matrix
equation. With rapid advances in paralle! computing and large memory data storage
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APPENDIX A. EVALUATION OF THE NORMALIZED
EXCHANGE FACTORS

As shown in Section 2, four normalized exchange factors, F,,, F,, F,,, and F,, are
sufficient to characterize the radiative exchange between cube-square elements. In
Tables A.1 thru A4, tabulated values of these exchange factors are presented, These
factors are identified by the optical thickness and a three-number sequence (kD, n_,
n,, 1,). lustrative examples of the numbering sequence are given in Figures A.1,
A2, A3, and A 4. The numbers on a line are tabulated in order of increasing optical
thickness as shown. The first four digits in each number represent a decimal fraction.
The sign and remaining digits are the power of 10 by which the fraction is to be
multiplied {e.g., 8128-1 equals 0.8128 x 10-%. All values are accurate to within a

relative error of less than 1%.

Table A.1 Tabulated Values of F kD, n, n, n)

n,n, B, kD=001 a1 0.2 0.5 1.0 20 3.0 40
111 1785 1 747 1 1698 1 15571 13391 1038 1 8401 & 70200
112 3956 0 3731 ¢ 3119 0 2588 ¢ 13130 9877 -1 6004 -1 3958 -1
113 8128 -1 6846 -1 5557 -1 3231 -1 1310 -1 2386-2 4864 -3 1084 -3
114 3498 -1 2686 -1 1711 -1 8414 -2  2051-2 13503 1001 4 8183 -6
1i5 1932 -1 i354 -1 9168 -2 28382  416i-3 9919 -5 2712 -6 5177 -8
122 17820 1602 0 1394 0 9778 -1 5588 -1 2093 -1  9217-2 4643 -2
i23 6460 —1 3325 -1 44101 2286 -1 82732 12132 2035-3 3825 4
124 3139 -1 23751 1688 -1 6971 -2 1368 -2 88354 5665 -5 4053 -6
125 1815 -1 1258 -1 9218 -2 2510-2 34613 1359 -5 1783 -6 4883 -8
133 3960 -1 3G90 -1 2347 -1 194G -1 2788 -2 22453 2009 -4 2233 -5
134 2395 -1 1740 -t 12001  4272-2  T7691-3 27944 1172 -5 5595 -7
135 1535 -1 1631~ 73772 1787-2 2069 -3 31155 5409 -7 i082 -8
144 1712 -1 1174 -1 78462 2233 -2 2906-3 33525 1232 -6 33158 -8
145 1220 -1 7810 2 46352  1094-2 9719 -4 8626-6 8905 -8 1067 -9
135 9454 -2 5703 -2 30462 6134 -3 39154 1966 1011 -8 5978 -1}
222 1270 §766 -1 8374-1 52501 2823 -1  6738-2 21772 8256 -3
223 5346 -1 4321 -1 3449 -1 1704 -1 3535-2 66063 9161 -4 1448 -4
224 - 2845 -1 2123 -1 1526-1  5856-2 1219-2 39144 3291 -5 2064 -6
225 1712 -§ 1173 -1 87972  2231-2 2898 -3 5475 .5 1187 -6 7936 -8
233 3506 -1 2693 -1  2028-1 8465 -2 2078 -2 14123 224 1026 -5
234 2219 -1 1592 -1 1079 ~1  3700-2 62223 1976-4 7283 -6 3078 -7
235 1460 -1 9710 -2 6625 2 Y 1609 -2 1763 -3 2379-5 3716 -7 6720 -9
244 1619 -1 1099 -1 M10-2 19942 2448 -3 4165 -5 8263 -7 19131 -8
245 11711 4332 4268 2 0002 84384 6803 -6 6378 -8 6970 -10
255 9158 -2 548G -2 2884 -2  3690-3 3476 -4 1461 -6 7550-9 4106 ~11
333 2603 -1 1916 -1 1365 -1  4986-2 9668 -3 4105 -4 2045 -5 1185 -6
334 1816 -1 1259 -1 8602-2 2508 -2 3479 -3 7336-5 1909 -6 3636 -8
335 1272 -1 8222 -2 5011 -2 1199 -2 1121 -3 1103 -5 1266 -7 1696 -9
344 1392 -1 91672 39452 1455-2 15123 1845 -5 2641 -7 4459 -9
345 1046 ~1 6471 -2 3409 -2 7765-3 5684 4 3436 -6 25628 2018 -10
335 8370 -2 4894 -2 2623 -2  4586-3 2464 -4  BO35-7 3224-9 137011
444 1127 -1 7087 -2 3503 -2 9178-3 13934 34205 4673 -8 4760 -10
445 8880 -2 5273 -2 26712 5288-3 3094 4 1196 -6 57199 2003 -11
435 7315 -2 4124 2 21242 3287 3 1443 -4 31457 8439 10 2412 -12
555 6211 -2 33462 1722-2 21553 72715 9379-8 148210 2508 -13
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If numerical evaluation is needed, three approaches are recommended. The selec-
tion of the approach depends on the optical thickness, the geometry of the considered
volume (or area) elements, and the availability of previously tabulated data of
normalized exchange factors. These approaches are described in detail in the follow-

ing three subsections.

A.1 Direct Numerical Integration

With advanced computational equipment, this approach is quite feasible when the
two volume {or area) elements are disjointed or are connected by only common
edges. The convergence can be slow when the optical thickness is large. However,
this method has serfous difficulties for exchange factors between joined elements
(with common surfaces and/or common volumes) in which the integrand has a
singularity. Even with modern high-speed workstations, a “brute force” numerical
integration cannot converge to acceptable degree of accuracy (say, within E%) for
elements with moderate or large optical thicknesses.

A.2 Superposition

The approach is particularly effective in building up exchange factors with large
optical thickness using available data with smaller optical thicknesses. For example,
if Fppis knownfork, ;D =0.1 and 1, 1, M, = 1,2, ... 10, the self-self exchange factor
F, (1.0, 1,1, 1) can be obtained by

) 2
F;g{l.(), LLD = (0.1)

10 1 10 0 1 10 .
xizzzz’ﬁ%(o.% g -+ -+t @D

=l =l g=l =l =1 =1

Tf each of the normalized exchange factors with the optical thickness of 0.1 are
tabulated to an accuracy of 1% relative error, the exchange factor generated by the
summation also has a relative error of 1%.

A.3 Superposition and Direct Numerical Integration

With joint elements for which the exchange factor must be calculated numerically,
the difficulty with the singularity can be avoided by first evaluating a basic differ-
ential exchange factor. The specific geometry is shown in Figure A.5, The differen-
tial exchange factor between dV and A is given by

Y Z
= dVM| kX, —, = A2
dgs ( X X) (A.2)



Table A.2 Tabulated Values of F,,(kD, n, n, n,)

A, A, R kD= (.01 0.1 0.2 0.5 10 2.0 3.0 4.0
111 6636 0 6371 0 6100 0 34110 4474 0 32470 2506 0 20256
112 1248 0 1097 0 9437 -1 6017 -1 2943 -1 7173 -2 1884 -2 5140 -3
113 4769 ~1 3821 -1 2939 -1 1425 -1 3995 -2 37513 3574 -4 3645 -5
114 2457 -1 1794 -1 1292 1 4456 -2 7472 -3 2605 -4 9349 -6 3497 -7
115 1481 -1 9850 -2 6195-2  1516-2 1667 -3 2152 -5 2853 -7 3545 -9
121 13370 12300 13330 8801 ~1 5920 -1 2897 -1 1704 -1 1068 -1
122 7862 % 6784 -1 5669 -1 3361 -1 1479 -1 2976 -2 6480 -3 1492 -3
123 3881 -1 30721 2343 -1 W71 -1 2893 -2 2246 -3 1808 -4 1629 -5
124 2194 -1 1588 -1 1135 -1 3661 -2 6250 -3 1796 4 5765 -6 1940 -7
125 1381 -1 9155 -2 5727 -2 1410-2 1498 -3 1629 -5 1968 -7 2222 -9
131 1807 -1 1620 -1 1346 -1 7508 -2 3046 2 5175-3 9440 -4 1882 -4
i32 3053 -1 2472 1 1940 -t 9521 -2 3013 -2 3156 -3 35554 4584 -5
133 2349 -1 1716 -1 1298 1 5123 -2 1099 -2 5305 -4 2776 -5 1673 -6
134 1625 -1 13411 7807 -2 2367 -2 3258 -3 6369 -5 1464 -6 3571 -8
£35 1135 -1 7349 -2 45302 1061 -2 9268 -4 73546  6738-8 5729 -10
141 5702 -2 4402 -2 3260 -2 1388 -2 32797 -3 1854 -4 1365 -5 1085 -6
142 1251 -1 9375 -2 6618 -2 2598 -2 5260 -3 2129 -4 1117 -5 6415 -7
143 1296 -1 9252 6110-2 20322 3064 -3 7038 -5 2023 -6 6365 -8
144 1088 -1 7248 -2 44632 1190 -2 1246 -3 1395 -5 1885 -7 2714 -9
145 8566 -2 5297 -2 30672 63013 4300 -4 21796 1283 -8 6930 -11
151 2388 -2 1681 -2 1223 -2 356% -3 4884 -4 1070 -5 2898 -7 6401 -9
152 5970 -2 4111 -2 2846 -2 7850 -3 9638 <4 1628 -5 3412 -7 5988 -9
153 7305 2 4824 -2 31082 T616-3 7594 -4 7983 -6 1039 -7 1171 -%
154 065 -2 4409 -2 2627 -2 5491 -3 3929 -4 2275 -6 1570 -8 9650 -1t
155 6185 -2 3623 -7 20242 3394 -3 1693 -4 4762 -1 1570 -9 4696 ~12
221 3444 -1 4854 -1 4268 -1 2053 -1 1656 -1 5888 -2 2434 -2 1157 -2
22 5411 % 4568 -1 3709 -1 2066 -1 8154 -2 1331 -2 2397 -3 4675 -4
223 3228 -1 2519 -1 1851 -1 8224 -2 2064 -2 1356 -3 9475 -5 7529 -6
224 1973 -1 4151 9972 -2 3196-2 50331 -3 1256 -4 3610 -6 1093 -7
225 1291 -1 8499 -2 52852  1300-2 1280 -3 1242 -5 1368 -7 1405 -9
231 1380 -1 1146 -1 5248 -2 4876 -2 1770 -2 2425 -3 3707 -4 6355 -5
232 2445 -1 1948 -1 1489 -1 6984 -2 2005 -2 1747 -3 1682 -4 1876 -5
33 2046 -1 1526 -1 1091 -1 4153 -2 8282 -3 3472 -4 1593 -5 8508 -7
234 1487 -1 1032-1 6903 -2 2034 -2 2636 ~3 4620 -5 9555 -7 2104 -8
235 1069 -1 68512 41792 95023 1879 -4 5710-6 47868 3717 -10
241 4867 -2 37032 26772 1106-2 2356 -3 1644 7448 -6 5207 -7
242 1089 -1 8123 -2  5619-2 21272 3981 -3 41 -4 6495 -6 3299 -7
243 1177 -1 8283 -2  3402-2  1735-2 2452 -3 5011 -8 1285 -6 3630 -8
244 1014 -1 6697 -2 4051-2 10552 1043 -3 1958 -5 1300 -7 1698 -9
243 8141 -2 4592 -2 2851-2  3737-3 3719 -4 1735 -6 93929 4662 -11
251 2179 -2 1518 -2 1078 -2 P050 -3 3950 —4 TE92 -6 1861 -7 3695 -9
252 5502 -2 3T -2 25422 6855-3 84 11975 2253 -7 3568 -9
253 6830 -2 4469 -2 2833 -2 6828 .3 6312 -4 6081 6 7178 -8 7356 -10
54 6702 -2 462 24452 4986 -3 3400 -4 - 17996 1133 -8 6414 -1]
255 5936 -2 3432 -2 1914-2 3122 -3 1459 -4 3889 -7  1187-9 3237 -12
331 6820 -2 3358 -2 4073 -2 1829-2 4756 -3 3651 -4 3121 -5 3194 -5
332 1446 -1 1087 -1 79762 32222 7150 -3 3739 4 2202 -5 156G -6
333 1438 -1 1034 -1 7066 -2 2379 -2 3860 -3 1087 -4 3377 -6 1246 -7
334 1170 -1 78702  5001-2  1350-2 1494 -3 1865 -5 2821 -7 4579 -9
335 9031 -2 5629 -2 3347 -2 6950-3 4972 4 2757 -6 1776 -8 HS55 -10
341 3269 -2 2390 -2 1642 -2 5968 -3 1006 -3 3302 -5 1389 -6 6513 -8
342 7864 -2 3607 -2 3708 -2 1248 -2 1877 -3 4348 -5 1424 -6 4984 -8
343 9108 -2 6199 -2 3881-2  1124.2 1327 -3 1931 -5 3545 -7 7238 -9
344 8380 -2 5374 -2 31292 7504 -3 6285 -4 4798 -6 4428 -8 4364 -10
345 056 -2 4228 -2 2340-2  4380-3 2480 -4 8939 -7 3788 -9 1465 -1l
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Table A.2 Tabulated Values of F, (kD, n,, n, n,) (continued)

n, n, n, kD =0.01 G.L 0.2 0.3 1.0 z0 3.0 4.0
151 1690 -2 1147-2 76973 20183  2180-4 30326  5269-8 761710
152 4405 2 2915-2  1877-2 46613 43414 5009-6 6880 -8 §024-10
353 56707 36002 2203-2 4873 -3 38604 27926  2472-8  1509-10
354 $974.2 3491 -2 20072 37I2-3 0 22464 91227 4464-5 1949 -11
355 52742 29992 1623-2 24593 105i-4  2i56-7 5243-10 1155-12
441 19942 1375-2 8624-3  2648-3  3235-4  5677-6  1264-7  3139-9
442 5084 .2 34282 20812  3995-3 65524  B995-6 15587  3009-9
443 6408 -2  4152-2 23942 G077-3 53624 4700-6  5114-3 617210
444 £3%0-2  3017-2 21612  4533-3 29564  1435-6 8405 -9  S5219-11
445 5716-2 3952  1730-2  2878-3 13304 31947 9083 -10 235212
451 12082  7784-3 47523 1016-3 92523  7§86-7  TB47-% 6838 -1l
452 1991 -2 2035-2  1209-2 26693  2019-4  1345-6 1130-8  8095-11
453 4348 2 26522 1512-2 29803, 18684 84017 47699 234211
454 4633 -2 7698-2 14602 24523 11864 31717 1030-% 2984 -12
455 4408 -2 2425-2 1243 -2 16953 60375 B505-8  1432-10 2184 -13
551 8210 -3 49243 29823  S080-4  3310-5 14077  T539-10 343412
552 9766 -2 1351-2  7834-3  1376-3 75823 2690-7  1196-0 4574 -12
553 11812 1338-2  1027-2  1626-3 76035  1910-7 5953 -10 162212
554 3561 -2 1969-2  1036-2  1427-3 53015  BX21-8 155910 2630-13
555 1549 .2 1858-2  9219-3 10613  2054-5  2536-8 262311 2448 -l4

where

o = ~k¥n,
" - e
M(kX, r —Z—] = lj (0™ “’3) dn,dn, (A3)
. X X T n,

Using the angular coordinate as defined in Figure A.5 and some algebraic manipu-
lation, the integral can be reduced to

M( Y _Z_} - B(%) _ %J‘: [R? + 1] Ez[kX(Rf + 1)%]4@ (A4)

XX 2
where
X 0<¢ tan“l—z—
R = X?S‘t 5 Y - (A.5)
—Z _ tan?'= <o
Xsing Y 2
and E,(x) is the exponential integral function defined by
. 1 -xr 6
Ey(x) = j e dt (A.6)
i



Table A.3 Tabulated Values of F

SIp

kD, n, Ry, 1)

n, 1, R, kD =0 0.01 0.3 0.2 05 1.0 2.0 30 490
i1 1998 O 1976 0 1789 ¢ 1570 0 11480 6618 -1 2210-1  7435-2 2518 -2
£12 6862 -1 6721 -1 5577 -1 44451 2435-1 8648-2 1094 -2 1388 3 1768 -4
113 3298 -1 3198 -1 24301 1753 -1 7171 -2 15602 7395 -4 3509 -5 1668 ~6
114 1811 -1 1836-1 12761 8312-2 2535-2 3364-3 5930-5 1046 -6 1857 -8
115 1240 -1 13801 75022 42482 1002-2 B094 -4 35285 -6 3465 -8 2267 -10
121 8606 -1 84921 7538 -1 6585 -1 44621 2341 -1 6643 -2 15402 35874 -3
122 4807 -1 4700-1 3839-1 3038-1 15661 51342 S3615-3 6267 4 7118 -5
123 2736 -1 2650 -1 1989 -1 1428 -1 5559-2  1133-2 4764 -4 2027 -5 8724 -7
124 1768 -~ 1638 -1 1127 -1 7337 -2 21442 2698 -3 4303 -5 8921 -7 1124 -8
125 1151 -1 1094 -1 68972 3090-2 8886-3 6864 -4 4i1§-6 2490-8 1511 -10
131 1527 -1 1496-1 12441 143 -1 5548-2 20692 3081 -3 4943 -4 8407 -5
132 2066 -1 20031 1563 -1 1193 -1 52202 1345-2 9363 -4 6873-5 5276-6
133 1686 -1 1626 -1 1177-1 8247 -2 2834 -2 47523 1397 -4 42676 1345 -7
134 1256 -8 1201-1 BO30-2 5133-2 13442 1450-3 17225 2101 -7 26129
135 9337 -2 8847 -2 5443 -2 3107-2 63023  4275-4 1998 -6 5511-9 4605 i1
141 3569 -2 3463-2 26452 1997-2 8094-3 1896-3 1135-4 T485-6 5319 -7
42 Te46 -2 672 -2 5596-2 3923 -2 1391 -2 2499 -3 8633 -5 32296 1288 -7
143 8993 -2 8623 -2 5913-2 38082 1il4-2 14063 2359 -5 4207 -7 7733 -9
144 8160 -2 Tie4 -2 4960-2 28202 6809 -3 5762 -4 4288 -6 3317 -8 2681 -10
145 6856 -2 6468 -2 3829-2 2135-2 3741 -3 2063 -4 6465 -7 2088 -9 6982 -12
151 11832 11372 7947-3 6039 -3 16383 2351 -4 5326 -6 1344 -7 3478 -9
152 33332 3191-2 21532 I517-2 3796-3 44594 6678 -6 11007 1872 -9
153 4603 -2 4466 -2 2865 -2 1842 -3 4023 -3 3533 -4 29186 2558 -8 2417 -10
154 5021 -2 4746-2 2863 -2 1667-2 3051-3 1891 -4 7665 -7 3270 -5 1483 11
155 4745 -2 4451 -2 25062 13TG -2 1964 -3 8261 -5 1524 -7 293910 5954 -13
221 4331 -1 42641 3707-1 3I8G-1 2007-1 95002 2245-2 55463 1492 -3
222 3511 -1 3427 -1 2756-1 2147 -1 10538 -1 3179 -2 3002-3 2540 -4 2092 -5
223 2302-1  2227-1 1651 -1 1175-1 4376-2 8373 -3 3123 -4 11915 4639 -7
24 1534 -1 14701 1002 -1 6488 -2 1825-2 2180-3 3I50-5 4619-7 6870 -D
225 1071 - 10161 6358 .2 3605 -2 7901-3 58444 32246 1799-8 1013 -10
31 105~ 1028 -1 8396 -2 6826 -2 3454 -2 1170-2 14593 20024 2569 -3
232 1644 -1 1597 -1 1228 -1 92002 38552 9221-3 55174 36025 2463 -6
233 1464 -1 1410-1 1009 -1 60552 2297-2 3653-3 9588 -5 26336 7437 -8
234 1144 -1 1093 -1 7239 -2 4558-2 1163 -2 1193-3 1289 -5 14387 1641 -9
235 8745-2 82792 5054-2 28B6-2 56513 3675-4 1583 -6 6971 -9 3313711
241 2929 -2 28382 2137-2 15682 6148-3 1335.3 6928 -5 40026 2522 -7
242 6853 -2 6607-2 47622 3266-2 1123-2 1891-3 S7IT -5 1926 -6 6648 -8
243 8088 -2 77472 5258-2 33422 9478 -3 1I133-3 17135 2769 -7 4635 -9
244 7558 -2 Ti84 -2 45502 26442 60163 4861 -4 3309-6 2350 -8 1753 -10
245 6478 -2 6106 -2 3588-2 19912 3393 -3 17984 52157 15646 4872-12
251 1052 -2 10i10-2 6980 -3 5§57‘§—3 1371 -3 1853 4 3Mi-6 8IS8 -8 1980 -9
252 30202 2888-2 1929-2 13252 3256-3 36234 4887-6 7087 -8 1129 -©
253 4340 -2 41272 2623 -2 1657 -2 3544-3 29674 2234 -6 1792-8 1556 -10
254 4724 -2 4463 2 2671-2 1550 -2 2751 -3 1634 -4 61077 2408 -9 1013 -1l
255 4524 -2 4241-2 2371 -2 1283 -2 1804 -3 7309 -5 1255 -7 225610 4275 -13
331 4481 -2 4356-2 3381-2 2596-2 1il2-2 2861 -3 20954 1729-5 1580 -6
332 9341 -2 9032-2 6673 -2 4793 -2 1756-2 3389-3 1356 <4 5936 -6 2805 -7
333 1006 -1 9659 -2 6693 -2 4448-2 1320-2 1764 -3 3318 -5 6647 -7 1382 -8
334 8838 -2 84172 5424-2 3284-2 F740-3  6B6T -4 5612 -6 4769 -8 4237 10
335 7268 -2 68622 4093 -2 2347-2 41343 23744 80655 -7 2816-9 1017 -11
341 1714 -2 1711 -2 1239-2 8615-3 2998 -3 52594 1799-5 6984 -7 2839 -8
342 4636-2 4453 -2 3102 -2 2042-2 6295-3 8Bl6 -4 1882 -5 44607 1107 -8
343 6054 -2 5780 -2 381i-2 2334-2 6044 -3 6I73-4 6885-6 H178 -8 1051 -9
344 6099 -2 5781 -2 357i-2 20222 42303 2987-4 15666 8640 -9 5066 -1}
345 5312-2 5183 -2  2080-2 I610-2 2562-3 1207 4 2789 -7 6712-10 1693 -iZ
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Table A.3 Tabulated Values of F,_(kD, n, n, n) (continued)

n, n, kD wlG 0.0t [i}] 0.2 0.3 1.0 2.0 30 4.0
351 7667 -3 7332-3  4911-3  3399-3 84024 9574-5 13826 2186-8 3906-10
352 2305 -2 2197-2 1426-2 93343 2121-3 20194 20076 21658 2610-10
353 3480 -0 3308-2 2050-2 12482 2474-3 18034 10356 63899 4316-i1
354 3976 -2 I746-2  2197-2  1252-2 20433 10734 31567 98584 -10 3321 -12
355 3047 -2 3692 -2  2023-2 10556-2 1408-3  5117-5 7063 -8 103810 1812-13
441 9478 -3 9037-3 61B0-3 3902-3 1159-3 14844 27i6-6 54848 12639
442 2750 -2 26272 11382 10492 28133 2975-4 36556 4904-3 736810
443 4026 2 3824 -2  2411-2  1373-2  3136-3 2508 -4 1733-6 1289-% 105210
444 4453 -2 4204 -2 24572  1361-2 2486-3 14184 49037 1801-9 713212
445 4319 -0  4046-2 2347 -2 11272 1659-3  6482-5 03B -7 174810 312413
451 4947 -3 4707 -3 3006-3 1880 -3 41684 3655-5 31427 29919 3240-11
452 1570 -2 1489 -2 92573 55413 1132-3 8459.5 32147 3529-9 2688 -1i
453 2536 -2 2394-2 1426-2 8I09-3 1442-3  B444 -5 31547 12789 573712
434 069 -2 2880-2 1626-2 8721-3 12943 55885 11187 2402-10 5620-13
453 307 -2 2984.2 1584-2 7875-3 9566-4 29165 2852 -8 299911 3364 -14
551 1039 -3 28723 1730-3 1055-3 1844 .4 1165-§ 5119-8 2594 -1C 1478 -12
552 10132 95503 5611-3 33033 5361 -4 29425 96828 3630-10 1517-12
553 1741 -2  1634-2 9245-3 5166 -3 7444 -4 32835 6919 -8 163410 4254 -13
554 2940 -2 2001-2  1126-2 58863 7284 -4 2431-5 2904 -8 382211 3477-14
535 2467 -2 20882 1164-2 5669 -3 S5822-4 1405-5 8681-9 582112 4200-15

Note that the integrand in Eq. (4.4) is free of singularity and can be readily evalu-

ated numerically.
For the evaluation of F,(kD, 1, 1, 1) and F (kD. 1, 1, 2) as defined by Eq. (10),

super-position can be used to yield

10
kD,l,l,lzm—jJ-j

with

and

N,(kD, . my, 1) = MIKD(1- 1)

+ M

+ M

+ M

N,(kD, m,, m,, 1, )dn.dnyen,

-1, 1-m, ]
kD(1~ 1,), %%i—, ?:I«Li“}:_
of-n) 2515

(AT

(A.8)



Table A.4 Tabulated Values of F_(kD, n, n, n)

n,n,n, kD=0 .01 0.1 0.2 0.5 1.0 2.0 340 4.0
111 20000 1989 O 1893 G 1799 0 15390 12180 8280 -1 6107-1 4787 -1
112 3280 -1 32291 2804 -1 2366-1 1509-1 T072-2 16312 8984 -3 1321 -3
113 8904 -2 8681 -2 6900 -2 5328 -2 25252 72933 6398 -4 59405 5777 -6
114 3466 -2 33462 2437-2 1709 -2 6002-3  1059-3 34755 12106 4336 -8
i15 1675 -2 1601 -2 1066 -2 6767 -3 1766-3 1898 -4 23126 2859-8 40i6-10
121 3281 -t 32291 28041 2366-1 1509-1 H72-2 16312 39843 1021 -3
122 3294 -1 32261 26721 21771 11661 4216 -2 3859 -3 87834 1404 4
123 1588 -1 1543 -1 1188 -f 8839 -2 37622 9093 -3 5632-4 3744 -5 2644 -6
124 TI63 -2 74742 5312 -2 3817-2  11M4-2 18123 45665 12306 3469 -8
125 4180 -2 3986-2 20042 16022 39573 3820-4 37666 3B55 -8 4360 -10
131 8903 -2 8680 -2 6909 -2 5328 -2 25252 7293 -3 6397 -4 59405 5777 -6
132 1588 ~1 1543 -1 1188-1 B839-2 3762-2 90943 5632-4  IM4-5 26456
133 12401 1197 -1 87262 61672 2153-2 3815-3 12734 4582-6 17577
134 7995 -2 7659 -2 52072 3383 -2 9449 -3 11403 17625 2931 -7 5157 -9
135 5035 -2 4783-2 30132 17662 3894 -3 30734 2030-6 1407-8 107510
141 3466 -2 33462  2437.2 1709-2 6002 -3 1059 -3 34755 12106 4430 -3
142 7763 -2 474 -2 53122 3617-2 1174-2 18123 45665  1230-6 3511 -8
143 7995 2 7639 -2 5207-2 33832 0450-3 1140-3 1762-5 29307 5186-8
144 64102 6101 -2 39122 2385-2 54743 4773 -4 3858 -6 33198 3109 -10
143 4699 -2 4439 -2 2660-2 1503-2 27543 1649 -4 62757 2529-% 111611
151 16752 1601 -2 H66-2 6767-3 17663 1898 -4 23116 3017 -8 4078 -10
152 4180-2 3986 -2 2604-2 16022 3957-3 3B20-4 3766-6 39828 441510
153 50352  4783-2 30132 1766-2 3894 -3 3074 -4 20306 #437-8 1084 -10
154 4699 -2 4439 -2 2660-2 15032 2754-3 16484 62757 25525 112111
155 3899 -2 3659-2 2065-2 1117-2 1639-3 70425 1380 -7 2882 -10 6551 -13
P 4058 -1 4018-1 3678 -1 3414 -1 2518-1 16241 7566-2 4035-2 2410-2
212 1892 -1 1858 -1 1581 -1 1308-1 7788 -2 3284-2 62643 1297 -3 2884 -4
213 6862 -2 6679-2 52362 3959 -2 1790-2 4774 -3 36084 29285 2522 -6
214 2994 -2 2887-2 2078 -2 1435-2 4861-3 8060 -4 2346-5 T35 -7 2378 -8
215 1527 -2 14582 9624 -3 6016-3 1528 -3 13614 17246 19708 2503 -10
221 1892 -1 1858 -1 1581 -1 1308-1 7787-2 3284-2 6264 -3 12973 2884 -4
222 2304 -1 2252 -1 18321 1455 -1 74022 2438 -2 2851 -3 36564 5088 -5
223 1290 -1 1252 -1 9513 -2 6947-2 2833-2 6362-3 3427 -4 20035 1256 -6
224 6833 -2 6570-2 4618 -2 3096 -2 9726-3 1414-3 3181 -5 TI06-T 1567 -8
225 3841 -2  3660-2 2369-2 1435-2 345%-3 3179-4 2851 -6 2668 -8 2771 -10
231 6863 -2 6679 -2 5236-2 3959-2 I790-2 4774-3 3607 -4 29285 2523 -6
232 1290~1 1252 ~1 9513 -2 6947 -2 2833 -2 636% -3 3427-4  2003-5 1257 -6
233 10751 -1 10331  7437-2 5162-2 1742-2 2898 -3 8569 -5 27506 9464 -8
234 7221 -2 69102 46581-2 29762 80803 9242-4 1288 -5 19427 31148
235 4684 -2 4445 2 27772 1612-2  3458-3 26074 1576-6 1004 -8 7079 -11
241 2994 -2 2887-2 2078-2 143512 4861 -3 8061 -4 23465 7357 4158
242 6833 -2 6570 -2 4618 -2 3096-2 9726-3 14i4-3 31815 7067 1950 -8
243 72212 69102 465F-2  2976-2 80803 9242-4 12885 19427 3131-9
244 5929 -2  S$638-2 3585-2 2155 -2 4825-3 40134 2958 -6 23298 2008 -10
245 4427 -2 4179 -2 2485-2 1395-2 2488-3 14284 5013 -7 1868 -9 7639 -12
251 1527 -2 1458 -2 9624 -3 6016-3 15283 15614 1724 6 2047-§ 2540 -10
252 38412 3650-2 2369-2 1435-2 34593 31804 2851-6 27518 2803 -10
253 4684 -2 4445 -2 2776-2  1612-2 3458 -3 2607 -4 1576 -6 1024 -8 713611
254 4427 2 4179-2 2485 .2 1395-2 2488 -3 14284 5013-7 I885-9 7687 -12
253 362 3485-2 1953 -2 10462  1504-3 6224 -5 1133 -7 2203 10 4678 -13
311 43122 4228 -2 3543 -2 29952 1636-2 64i1-3 1070-3 19684 38195
312 5859 -2 ST17-2 4589 -2 3637 -2 1750-2 5396-3 5603 <4 64705 8188 -6
313 3618 -2 3505-2 26322 1912-2 7461-3 1582-3 7692 -5 41l5-6 2378 -7
314 2033 -2 1952 -2 1359-2  90i0-3 2744-3 3798 -4 7808 -6 1749 -7 4160-9
315 11842 11272 72373 43543 1019-3 8975 -5 4377 6465 - 6324 -1

et = e g

Table A4 Tabulated Values of F (kD, n, n, n,) (continued)

n, R, B, kD=0 0.01 0.1 0.2 0.5 Lo 2.0 3.0 4.0
321 5860 -2 57182 45902 3637-2 1750-2 5395-3 5603 -4 64705 8188 -6
322 1005 -1 9773 -2 7157122 57252 2466-2 6235-3 43564 33993 2928 -6
323 7627 -2 7365-2 53822 37822 13502 2457-3  8BI0-5 34906 1503 -7
324 4850 -2 4647-2 3165-2 2051-2 57993 7107-4 11475 20267 3828 -0
325 3038 -2 28862 1820-2 10672 2365-3 1885-4 1281-6 9189 -G 7405 -1
33t 3618 -2 3504-2  2632-2 19122 T461-3  1582-3 76915 4liS-6 2388 -7
332 6272 1365 -2 53832 372 -2 135C-2 24573 8R0S -5 3491-6 15097
333 7260 -2 69822 4860-2 3245-2 9817-3 1361 -3 2828-5 6466-7 1606-%
334 5463-2  5211-2  3409-2 2102-2 5220-3 5l12-4 52696 5822-8 721810
335 38232 3618-2 2206-2 1263-2 2465-3 16274 7585 -7 37605 2085-11
341 2032-2 18522 1359-2 90103 2744-3 37984  JROB -6 1749 -7 42159
342 4850 -2 4648 -2  3165-2 2051-2 5800-3 71094 1147-5 2026-7 38659
343 5463 -2 S211-2 4092 2102-2 52223 S51i2-4 52696 5888-% 725110
344 4770 2 4523 -2 2803 -2 16392 3373-3 24444 13776 8§349-% 5614 -1
345 740 -2 35212 2047 -2 1126-2 1857 -3 9441 -5 2609 -7 77i5 10 2533 -12
351 1184 -2 1127-2  7237-3  4354-3  1019-3 8975 -5 74367 6684-0 640611
352 3038 -2 7886-2 1820-2 1067-2 2365-3 18854 12816 9444-9 T486-11
353 38232 3619-3 2205-2  1263-2 24653 16274 75857 3828 -9 2:10-l1
354 3740 -2 3521 -2  2047-2 11262 1857 -3 9441 -5 26097 TII8-~10 2542-12
355 3238 -2 3029 -2 1664 -2  §6836-3 11723 4341 -5 6320-8 1001 -30 1737 -3
411 9335 3 9063 -3 6946 -3 52843 2060-3 5I79-4 3264-5 22856 1731 -7
412 1870 -2 1809-2 1346-2 96253 3661-3 7420-4 33485 1690-6 5294 -3
433 1680 -2  1616-2 1141-2 76463 2462-3 37264 93286 26057 7887 -9
4314 12092 11542 76413 4788-3 1233 -3 12944 1545-6 19858 2927-10
415 82203 7U8T-3  4791-3 2609 -3 55904 30045 2054-7 1150-9 734312
421 18702  1809-2 1346-2 96253 3661 -3 74i9-4 33485 16906 9318-8
422 4020 -2 3878 -2 2807 -2 1930-2 &770-3 11783 39255 14676 60008
423 2935 -3 I776-2  2605-2 1689-2 50733 67484 13055 2820-7 6650-9
424 3031 -2 2889-2 1875-2 1i20-2 2776-3 26l4-4 25196 26158 3111-10
425 2161 -2 2044 -2 1237-2  6924-3 1341 -3 85435 37417 17519 932212
431 1680 -2 1616-2 11422 7646-3 2462-3 3726-4 93196 26057 7946-9
432 3935-2 3116-2 2605-2 1689 -2 5073 -3 67474 13055 28207 6675 -9
433 4319-2 41252  2729-2 1678-2 4406-3 4631-4 85746 7324-8  1096-9
434 3681 -2 494.2 21872 12542  2754-3 21184 1358 -6 9436-9 74531l
435 2834 -2 26712 1566-2 8592-3  1477-3 7894 -5 24347 §062-10 3022-12
441 12092 1154-2 76413 4788-3 1233-3 12944 15496 2035-8 295610
442 30312 2889-2 1875-2 1120-2  2776-3 2614-4 25196 2663-8 3134-10
443 3682 -2 3495 -2 2187 -2 1254-2 2753-3 21184 1359 -6 95229 7480 -1%
444 3468 -2 3273-2 19492 10762 1968 -3 1148 -4 42197 16839 755012
445 2003 -2 2722-2 1527-2 7883 -3 1184-3 4957-5 9272-8 1903 -1G 4352-13
451 82203 77873 4791-3 2699-3 5590-4 39045 20537 11829 742312
452 2161 -2 2044 -2 12372 6924 -3  1341-3 RS44-5 37417  1791-9 G407 -12
453 2834 -2 2671-2 15662 85923  1477-3 7894 -5 24347 BIB6-10 3041 -12
454 20032 272 -2  1527-2 7883 -3 1iB4 -3 4956-5 93078 191710 4365-13
455 2623 -2 24452 1300-2 63963 79364 2462-5 2530-8 284611 354314
511 30203 2911-3 20393 1574-3 42494 GI86-5  1446.6 36598  1066-9
512 7164 -3 6868 -3 47023 3363 -3 88554 1id4 -4 2055-6 4046-8 923110
5i3 7984 -3 76193 50033 3401-3 78264 7939 -5 89907 1106-8 1581-iC
514 63103 6554-3 40733 2503 -3 49804 37055 22457 14728 1118 -il
515 53903  5076-3 2057-3 1711-3  2713-4 1406 -5 4048 -8 1283 -10 467913
521 7164 -3 6368 -3 4702 -3 33633 8855-4 1134-4 2085-6 40678 924210
522 11392 16632  1114-2 7706-3 1S08-3 2168 -4 30906 48i6-8 3673 -i0
523 2013 -2  1917-2  1235-2 7926-3 17733 1614-4 14736 1467-8 1692-10
524 1807 -2 1781-2 19452 6175-3 11853 80195 40177 2185-8 13721l
525 1452 -2 13652 78319 -3  4404-3 67284 32075 78288 211910 649413



Table A4 Tabulated Values of F, (kD, n,, n, n,) (continued)

B, n, kD=0 [£Z0)) 0.1 0.2 0.5 1.0 2.0 30 4.0

538 7984 -3 7619-3 5002 -3 3401 -3 78254 79395 89907 13198 1589 -I0
532 2013 -2 18162  1234-2 7926-3 1773 -3 1614 -4 1473 -6 1477 -8 1697 -10
533 - 24672 23402 14542 38233 1779-3  1324-4 80467 5361 -9 4101 -11
534 2348 -2 NM4-2  1310-2  7517-3 1287 -3 7276 -5 25377 964510 4207 -12
535 1984 -2 1859-2 1037 -2 3608 -3 78374 31855 5648-8 1111 -i0 2467 -13
541 6911 -3 65553 40733 2503-3 4980 -4 3705-5 2245-7 1498 -9 1125 -1
542 18072 17112 4S5 -2 61753 11853 80195 40177 2215-9 138011
543 2348 -2 22152 13162 75173 1287 -3 7276 -5 2337 -7 94 -H) 4218 -12
544 2380 -2 2234-2 1263-2 68613 1017-3 44755 9344 -8 2169310 $5670-13
545 21312 1988-2 1065-2 5391-3 4719-4 2179-5 2460 -8 3075 -11 4319-14
551 5390-3  5075-3 29573 17113 2713 -4  1405-5 40%4 -8 1321 -10 4719 -13
552 1452 -2 1365-2 T840 -3 44043 67284 3207-5 7903-8 215810 654213
553 1984 .2 1859-2 1037-2 56083 78364 3185-5 S5685-8 1124 -10 247913
554 21312 1988 -2 10652 53%1-3 4719-4 2179-5 2468 -8 3093 -11 4329 -i4
553 0172 1871 -2 9536-3 45703 4814 -4 11805  7614-8 542012 4309 IS

1 i pi ol
F kD, 2,1, 1) = - J; J; J; Nz(kD, N, Ty nz)a‘nxdnydnz (A.9)
with

2
Mo(kD, 1, m,, M) = M{"‘DG” ne) Jyn TTE—]
z z

r l-— 1, 2-
+ M| kD(1 - “z)’“{i“;f’ "1"“_%]

- M w(l“ﬂz) U }‘__Tlx}

m S iay
- o

- M|kD(1 - nz),;mygi, %—;—H (A.10)
L Z zZ

The integrand of Eq. {A.7) is free of singularity and Fo(kD,1,1,1) and F (kD, 2,
1, 1} can be computed with standard numerical integration technique. Note that from
symmetry, Fgf{kD, 1,2, )= F kD, 2, 1, 1).

Superposition can also be used to evaluate F  (kD, 1,1, 1) and F,(kD, 1, 1, 2}
(which is identical to F(kD, 1, 2, 1) and F (kD, 2, 1, 1) as defined by Eq. (7). These
expressions are

1 1 #1 pm
F (kD L, 1, 1) = 4 - - fo _L J; P(kD, m,, W,, 1, )dn,dn,dn, (A1)

where
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Figure A.1 Tlustration of the numbering sequence convention for exchange factor F (kD 3, 3, 4).

P(kD’ e My nz) =M (kD’ s Ny le) + N (kD, 1= M, Ny nz)
+ N, (kD, Mys Mys "qz) + N, (kD, 1- 1, M, "ﬁz)
+ N (kD my)+ M(ED L= m,) (A1)

and

F (D, 1,1, 2) = F,(kD, 1,1, 1) ~ 4F,(kD, 2,1, 1}~ F, (kD 1,1, 2} (A13)

where F,(kD, 1, 1, 2) (for two disjoint elements) can be calculated by direct
numerical integration.
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Figure A.2 Tlustration of the aumbering sequence convention for exchange factor F,(kD, 3,3, 4).
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Figure A4 Illustration of the numbering sequence convention for exchange factor F(kD, 3, 3, 4).
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Figure A.5 Geometry and coordinate system used in the evaluation of Bq. AZ
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APPENDIX B. DERIVATION OF THE AVERAGE
REFLECTIVITY AND SCATTERING FACTOR FOR GZM

For the development of Eq. (53), consider a volume zone V; and two area zones An
A, as shown in Figure B.1. The net outgoing radiation from a differential volume 4V,
reflected by a differential area dA, and intercepted by a differential area dA, can be
written as

Qg = i;f-"(;})*)”(g’eﬁ’ q’jf’eks’q}kf)e“k(r“”“'}

(ij . ﬁi)(;:kf ’ ﬁx’)(ﬁd i ﬁk)

kdV,dAdA, (8.1)

In terms of the net outgoing radiosity dW,;;, the intensity #';; can be written as

dw... ' - '
0y = —E {B.2)
. - ,

Utilizing the definition of exchange of factor, Eq. (B.1) becomes

3

W, ..
&’ Qi = dAw P”(E, 85 ¢ O q)ki)(dsidgj )(dssdsk) (B.3)

Figure B.1 Geometry and notation used in the development of Eq. 53,



In GZM, the radiosity from V,; directed toward A, is assumed to be constant.
Integrating over V,;, A, and A, Eq. (B.3) can be written as

Ciax = E‘ng.i(‘sigj)(‘gfsk)agji,k (B.4)

with p;,, given by Eq. (53).

Eq. (58) can be derived in a similar manner, Utilizing the geometry and notations
as shown in Figure B.2, the net outgoing radiation from a differential volume 4V,
reflected by a differential volume dV; and intercepted by a differential area dA, can
be written as-

CI)(cose.. ) e (“, A )

dik ] g+ m) e M) o
L AL 2L K AV AV dA
Az € ’}527};;3 i e (BS)

3 Y =
T Qs = ’g;‘.gz‘(’})m

In terms of the radiosity dW,;,; and the various differential exchange factors, Eq.
(B.5) becomes

wdW,, ,
dani,gi,k = m“g{?‘q}(cc’seﬁk)(dgzdgj)(dgfdsk) (B.6)

Figure B.2 Geometry and notation used in the development of Eg. 58,

Integrating over the finite volumes and area, Eq. (B.6) can be written as

with &

2ih g,

Qg =

. given by Eq. (58).

w

W, .
4le Bhgt

(S’sé’j )(grsk)(i)gf,gi,k

(B.7)



