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;) Abstract—Radiative heat transfer in a two-dimensional rectangular enclosure with gray medium and internal

heat generation is considered. Solutions are generated by a point allocation technique in which unknown
temperature profiles are expressed as polynomials. Based on a recently developed generalized exponential
integral function, the present solution technique is demonstrated to be computationally more efficient than
most of the conventional solution methods. For the case with constant internal heat generation, numerical
solutions for temperature and heat flux distributions for enclosures of different optical thicknesses and aspect
ratios are obtained. Analytical solutions are developed in the optically thin limit. Both the optical thickness
and the enclosure geometry are demonstrated to have strong effects on the temperature distribution within the
medium. The average heat transfer to the different boundaries, on the other hand, appears to depend mainly on
the enclosure geometry.

1. INTRODUCTION

IN THE analysis of heat transfer in furnaces and other
large-scale combustion systems, the importance of
radiation is well known [1]. Indeed, a numerical
technique which can deal effectively with the
mathematical complexity of multi-dimensional radi-
ative heat transfer in a heat generating system is
indispensable for a quantitative analysis of furnace
performance. In recent years, a large number of work
has been reported and many solution techniques have
been proposed in the general area of multi-dimensional
radiative transfer [2-8]. Mcst of them, however, deal

only with medium without internal heat generation. It %

is important to note that because of the integral-
equation nature of the problem, the mathematical
behavior of the governing equations for radiative
transfer with internal heat generation and those
without can be quite different. A solution technigue or
approximation procedure which is effective for the
analysis of radiative transfer without internal heat
generation can be relatively ineffective for problems
with internal heat generation. The diffusion approxim-
ation, for example, has been very effective in generating
accurate temperature distribution for a one-
dimensional planar system at radiative equilibrium. It
is relatively ineffective in generating accurate tempera-
ture distribution for the same planar system with
internal heat generation. Currently, reported analysis
on multi-dimensional radiative transfer with heat
gengration, either approximate or exact, are quite rare.
Some limited results on a rectangular enclosure
generated by Modesgt [4] and Howell and co-workers
[5, 6] appear to be the only reported numerical data
available in the literature. They are quite insufficient
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either to demonstrate the effectiveness of their solution
technigue for this class of problems or to illustrate the
general heat transfer behavior of a multi-dimensional
radiating heat-generating system,

In a recent publication [9], the point allocation
method, together with the introduction of a generalized
exponential integral function, was demonstrated to be
effective in the analysis of two-dimensional radiative
equilibrium. Detailed temperature and heat flux
distributions were genvrated with relatively little
computational complexity, The objective of the present
work is to demonstrate that the technique can be
equally effective for problems with internal heat
generation. Expressed in terms of the generalized
exponential integral function, the governing equations
are shown to be solvable analytically both in the
optically thick and thin limits. Exact Hmiting
expressions for temperature and heat flux distributions
are obtained. As in the case without heat generation,
evaluations of only single integrals are required for
numerical solutions. Compared to the standard Hottel
zonal method which requires evaluation of double
integrals, the present technique is thus more efficient
computationally. For a two-dimensional rectangular
enclosure with constant internal heat generation, heat
flux and temperature distributions for different optical
thickness and aspect ratio are generated based on the
present technique. Some interesting conclusions on the
general heat transfer characteristics of a multi-
dimensional radiating heat-generating system are
deduced.

2. MATHEMATICAL FORMULATION

The physical model and its associated coordinate
system is shown in Fig. 1. For simplicity, the four
boundaries are assumed to be black isothermal surface
with zero emissive power. It can be readily shown that
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NOMENCLATURE
a absorption coefficient r position vector
d(n, %', {,{) function defined by equation (7) S,(x)  exponential integral function
G,(n,{} dimensionless heat flux defined by T temperature
equations (3) and (5) ¥ coordinate
G(n,{} dimensionless heat flux defined by Y half-width of the rectangular enclosure
equations (3} and (6) z coordinate
H(n,8) internal heat géneration rate A half-height of the rectangular
H, characteristic heat generation rate enclosure.
k(n,{) dimensionless internal heat generation
rate defined by equation (3}
L, optical thickness of the enclosure in Greek symbols
the y-direction 4 optical thickness variable in the z-
L, optical thickness of the enclosure in direction
the z-direction ] optical thickness variable in the y-
My function in equation (26) direction
NY; function in equation (27) ] blackbody emissive power
Py coefficients of assumed polynomial 6, dimensionless emissive power
defined by equation (25) ¢ angular coordinate utilized by
Q heat flux vector equations (9)(11)
r ‘polar’ coordinate utilized by equations o Stefan—Boltzman constant.
(9)-(11)

based on superposition, solutions to a rectangular
enclosure problem with arbitrary constant surface
temperature and internal heat generation can .be
generated from the present result and those presented
in the previous work [9], From standard reference [ 10],
the energy equation for the medium is given by

]_ nlmlz' a dvr)+ H—('l )

where 0(r) = oT*(r}is the blackbody emissive power, r’
a point located at the interior of the medium Hir) the
internal heat generation rate and a the absorption
coefficient which for the present work is assumed to be
constant. Based on the medium’s temperature which is
determined by solution to equation (1), the radiative

40(r) = j ar)

=

g=0
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Fig. 1. Geometry and coordinate system for the two-
dimensional rectangular enclosure problem.

heat flux can be written as
~alr—r‘|
ar—rP
Asshown in the previous work [9], all integralsin the
x~direction can be expressed in terms of the generalized

exponential integral function $,(x). In terms of the
following dimensionless variables

Q) = Jﬂ(r) © alr—r) dV. 2

2 s_Z
=y t=p
0,1, = aﬂ(n,C), Gl ) = aQ}(In,C),
0 1]
WD) = H(”;O o)

Ll = ZaY, Lz = 2aZ

with Hy being a characteristic heat generation rate,
equations (1 ) and (2) can be simplified to yield

00 =222 | | o)
1(d) L
2 J‘_l J‘_' g( C)SZ( )(’? '?)d ;dC’
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G{( 0= L1L2'[ J 6,01 ’g,)Sz(d)(( C}d '
(©)
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FiG. 2. Coordinate and domain of integration used in
equations (9){11).

where

dn 7', §,8) = L3 —n )+ LEC =Y (D)

and

2 = e ™dt
=2 [ iy ®

Similar to the previous work [9], equations (4}-{6) are
rewritten in terms of a polar coordinate (r, ¢b) to simplify
the numerical computation. Therelation between these
coordinates and (y,{) is illustrated in Fig, 2. These
equations become

40,n, 0 = f.[ ( +—cos ¢,::
)

+ % sin qﬁ)Sl(r) dr dp+hin ) )
- .

G,nd= -'[ J- 9=(n+
(8]

+ % sin qﬁ)Sz(r) cos ¢ dr dp (10)

2r
G §) = —”{ K (n+ £ o8 6.4

+£ sin ¢)Sz(r) sin ¢ dr d¢. | (11)
L, .

2
L—:cos N4

Equations (9111} are the basic dimen_sionless
governing equations for the present problem.

3. METHOD OF SOLUTION

3.1 Limiting solutions

In the optically thin limit, it can be readily observed
that since the coordinate r has unit of optical thickness,
the integral on the RHS of equation (9) approaches
zero. The dimensionless emissive power and heat fluxes

become

h
B0 = (n,C)

0
G0 = —Szi ) J.J.w.) h(?1+i—:cos .0

+ r sin d)) cos ¢ dr dp (13)
L,

5,(0) 2
S I CEE

+ % sin sﬁ) sin ¢ dr d¢. (14)

(12)

and

Gc(ﬂ» () =

Ttis interesting to note that equations (12)14) suggest
that for internal heat generation rates which can be
expressed in simple analytical form (such as a power
series), the temperature distribution is also analytic and
the heat fluxes can be expressed analytically in terms of
some shape-factor-like integrations. These interesting
results will be presented in more detail in another
publication [11]. For the present work, a constant
internal heat generation H(y,{) = H, is considered.
Equations (12)-(14) become

] . 3(77’0 = 4 (15)
— 1 _1 b4 _, L
Gn(n’ 0 = ﬂl}h. (tan ! Z + tan~! E)
—1- (taﬂ'1 'C?i + tan™! f?_) (16)

_I'_C+ log( ;+n+)+§;1 g(C2 +ni):|

and
G;(L],;Lz: 'LQ = Gn(L.'ZsLth ’1) (17}
_ where
L L
ne ==+ 1o =H1-n) (18)
L L
Lo=si(+l, La=220=0. (19)

In the optically thick limit, a Taylor series expansion
of 84(1,0) in L1 ! reduces equations (9)<(11) into the
following familiar diffusion-like expressions

18%, 1%, 3
2o L2816 20)
8 86, 8 26,
Gn =~ 3L, o ¢ 3L,aC @1

Solutions to equation (20) are well known from
standard references [12].
Taking the limit of L; — c0 and utilizing the
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following identity
1 w2
Efx)== j. Sfxsec pycos" 2 dp (22)
2 —nj2
equations (4) and (6) are reduced to
Ly, Tk, ]t
00 =7 L X E,[—z- H] dr+g @3)

1
60-2 [ orm[2i-r]a e

3.2 Numerical solutions

Similar to the previous work, the point allocation
method is used to generate numerical solutions.
Specifically, for the case with constant internal heat
generation, the unknown temperature distribution is
assumed to be a polynomial as follows:

i=n j=n

blm=3% 2 P ze,zﬂ“@’z"-

i=0 j=0

Substituting equation (25) into equations (9) and (10),
the following equations result

(25)

i=n j=n .
. J‘Z st.z;[“'?”fu—Mﬂ.z;('b LLL,L)=1 (26)
=0

i

g X

i

I

g ]

Gr;(”s O = -

n j=n
Z Pzi.szer.z;(ﬂ:C,Lan)- 27
i=0 j=0

The detailed expressions of My .41, ¢, L1, L,) and
NYyy2:(,¢, Ly, Ly} are given in the previous work [9].
As demonstrated in the same work, only the numerical
tabulation of a finite number of single integrals are
required for the evaluation of these expressions. For
any assumed polynomial expression, the temperature
and heat flux distributions can thus be readily
evaluated based on equations (26) and (27).

4. RESULTS AND DISCUSSION

In the nth approximation, equation (26} is evaluated
at (n+1 locations (y =i/m,{ =jm,ij=0,n) to
generate a set of algebraic equations for the un-
known coefficients P;,;;. Since the functions
Mai2i,0, Ly, Ly) and NYy54(n,0,Ly, Ly} can be
readily evaluated, solutions are generated with little
effort. Some typical temperature and heat flux
distribution for L; = L, =0.1 and L; =L, =10,
together with the corresponding results generated with
a Hottel zonal method by Howell et al. [5, 6], are
presented in Figs 3a,b, 4a,b. It can be readily observed
that the third-order results are practically indis-
tinguishable from those generated by the Hottel
method. Indeed, the two results agree to within the
second decimal figure for all cases. The same rapid rate
of convergence is observed for all optical thickness
(L, L, = 0.1, 0.5, 1.0, 2.0 and 5.0) considered in this
work. = '

Itisimportant to note that the selection of allocation
points is not critical for the accuracy of the present
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Fic. 3. (a) Comparison between the first three-order

(n = 1,2,3) prediction of the medium temperature with the

available Hottel zonal result (L, = L, = 0.1).(b) Comparison

between the first three-order (n = 1, 2, 3} prediction of the heat

flux at the top wall (¢ = 1.0) with available Hottel zonal result
(Ly =L, =01).

approach. Accuracy can generally be assured if the
selected points are distributed uniformly across the
enclosure, In all cases, energy conservation (i.e. sum of
heat transfer to the four boundaries = total energy
generated within the enclosure) is achieved to within
0.1%; by the third-order results.

Typical heat flux and temperature distributions for
different values of L, and L, generated from third-order
solutions are presented in Tables 1-3, More detailed
distributions and solutions of the coefficient P,; ,; are
summarized elsewhere [13]. ‘

Qualitatively, results presented in Tables 1-3 agree
well with those expected from physical consideration.
Both the enclosure’s geometry and optical thickness
have significant influences on the medium’s tempera-
ture distribution. It is interesting to note, however, the
heat flux distribution at the wall for a given enclosure
geometry (L,/L,) appears to be quite insensitive to the
optical thickness L,. The optically thick and thin limit
of the heat flux at the midpoint of a boundary,
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Fic. 4. (a) Comparison between the first three-order

{(n = 1,2,3) prediction of the medium temperature with the

available Hottel zonal result (Ly = L, = 1.0).(b) Comparison

between the first three-order (n = 1,2, 3)prediction of the heat

fiux at the top wall (¢ = 1.0) with the available Hottel zonal
result (L, = Ly = 1.0).

- 0.2

Table 1. Third-order result of the heat transfer at the top wall,

Table 2. Third-order result for the horizontal center-line
temperature 8,(z,0)

L, L, 7=0 04 06 1.0
01 0272 0271 0270 0264

05 0290 0289 0287 0280

01 10 0296 0295 0293 0286
20 0300 0298 0297 0289

50 0301 0300 0299 0291

01 0296 0295 0293 0274

05 0408 0401 0391 0333

10 10 0500 0487 0469 0385
20 0600 0582 0557 0448

50 068 0663 0633 0505

01 0301 0301 0301 0274
.05 0467 0464 0457 0341
50 10 0686 0672 0648 0415
20 1163  L111 1031 0560

S0 2466 2270 2009 0923

G,(1,0)/L, are plotted as functions of the aspect ratio
R = L,/L,inFig. 5. Theremarkable similarity between
the two curves suggests that either one of the two
limiting solutions would be an adequate approxim-
ation of the actwal heat transfer. Inspection of
numerical results presented in Table 1 yields essentialiy
the same conclusion. Indeed, general solutions to
equations (13) and (14}, which will be presented
clsewhere [11], might be a sufficient first-order
analytical approximation of the boundary heat flux
distribution in a general two-dimensional heat
generating radiating system.

In the development of approximation method in this
area, many investigators demonstrate the effectiveness

- ofthe technique by the accuracy ofits prediction of heat

flux distribution at the boundary. The present result
suggests that such criterion can be quite misleading.
Sinee the heat flux distribution is relatively insensitive
to optical thickness, it is not surprising that most of the
existingapproximation methods such as the differential

G{m /L, - i Table 3. Third-order result for the wall temperature 8,(, 1}
L, L, 4=0 03333 06667 1000 L, L, g=0 03333 06667 1000
0.1 0.277 0.269 0.244 0.180 01 0.264 0.264 0.263 0.260
0.5 0.489 0.480 0448 0.327 05 0.272 0.271 0.271 0.267
0.1 1.0 0.543 0.534 0.502 0.336 0.1 1.0 0.274 0,273 0.272 0.268
20 0.565 0.556 0.525 0.304 20 0.274 0274 0.273 0.269
50 0.565 0.556 0.525 0.236 50 0274 0.274 0273 0.269
01 - 0.043 0.048 0,045 0.032 01 0286 0.285 0.283 0.268
0.5 0.191 0.185 0.163 0112 0.5 0.350 0.345 0.339 0.302
1.0 1.0 0.283 0.273 0.238 0.166 . 1.0 1.0 0.385 0379 0.370 0.320
20 - 0353 0.341 0.301 -0.206 20 0409 0402 0.392 0.338
50 0.374 0.361 0.320 0.192 50 0415 0.408 0.398 0.344
01 0.010 0.010 0.010 0.007 01 0281 0.291 0.201 0.269
0.5 0.050 0.049 0.047 0.031 - 0.5 0.397 0395 0.38% 0.309
50 1.0 0.097 0.085 0086 0.054 50 1.0 0.505 0.496 0480 0.344
20 0.177 0.170 0144 0.088 2.0 0676  0.651 0.613 0.389
50 0.298 0.282 0.227 0.132- 50 - 0923 0.869 0.797 0412
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FiG. 5. Comparison between the optically thin and thin
prediction of G,(1,0)/L,.

approximation [3, 4] and P-N method [5] yield
accurate heat flux predictions. The applicability of
these methods for practical system, however, would not
be established until they demonstrate a capability of
predicting the interior temperature distribution.
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ANALYSE DU TRANSFERT RADIATIF BIDIMENSIONNEL DANS UN MILIEU GRIS
: AVEC GENERATION INTERNE DE CHALEUR

Résumé—On considére le transfert radiatif bidimensionnel dans uneenceinte rectangulaire avecun milieu gris
et une génération interne de chaleur. Des solutions sont obtenues par une technique d’allocation ponctuelle
danslaquelle les profils de température inconnus sont exprimés de fagon polynomiale. A partir d’une fonction
intégrale exponentielle généralisée, la technique de résolution présente est montrée atre numériquement plus
efficiente que la plupart des méthodes conventionnelles. Dans le cas d'une génération interne de chaleur
constante, on obtient des solutions numériques pour les températures et les flux de thermiques dans des
enceintes d'épaisseur optique et derapport deforme variés. Des solutions analytiques sont développées pourla
limite optiquement mince. L’épaisseur optique et la géométrie de 'enceinte ont ensemble des effets importants
sur [a distribution de température dans le milien, Le transfert thermique moyen aux frontiéres différentes, par
contre, dépend principalement de la géométrie de 'enceinte.
. 1

ANALYSE DES ZWEIDIMENSIONALEN WKRMEAUSTAUSCI_—IES DURCH STRAHLUNG IN
EINEM GRAUEN MEDIUM MIT INNEREN WARMEQUELLEN

Zusammenfassung—Der Strahlungswirmeaustausch in einem zweidimensionalen rechteckigen Gebiet, das
ein graves Medium mit Warmequellen enthélt, wird untersucht. Die Lésungen werden mit Hilfe einer
Punkteverteilungstechnik gewonnen, wobei unbekannte Temperaturprofile durch Polynome ausgedriickt
werden. Ausgehend von einer kiirzlich entwickelten allgemeinen Exponential-Integralfunktion wird gezeigt,
dalB die hier behandelte Losungsmethode fiir Rechenmaschinen giinstiger ist als die gebriuchlichen
Losungsmethoden. Bei konstanten inneren Wirmequellen ergeben sich numerische Lisungen fiir die
Temperatur- und Wérmestromdichte-Verteilung in Hohlriumen mit verschiedenen optischen Dicken und
Seitenverhiltnissen. Fiir optisch diinne Schichten werden analytische Lsungen entwickelt. Es wird gezeigt,
daB sowchl die optische Dicke wie auch die Hohlraum-Geometrie einen grofen EinfluB auf die
Temperaturverteilung innerhalb des Mediums haben. Dagegen hiingt der mittlere Wirmetransport zu den
verschiedenen Begrenzungen hin hauptsiichlich von der Hohlraum-Geometrie ab.
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AHAJIM3 OBYMEPHOIO JYUMCTOrO TEILIONEPEHOCA B CEFOM CPEJE
C BHYTPEHHUM MCTOYHHKOM TEIIJIA

Annorauus—PaccMoTpen TyyucTHEE TenJonepeHoc B AByMepHolt NpAMOYTONbHOMA NONOCTH ¢ cepoit
Cpeaoii 1 BHYTPEHHHM HCTOYHHKOM Temna. 3ajava pellaeTca METOAOM HaHECeHHA TOYEK, B KOTOPOM
HCKOMBle NpPO(HIH TEMNEPATYPbl MOXHO MPEACTABMTE MHOrouneHaMd. C MOMOIUBIO HEAIBHO
npeanoxeHnoil o6obUIEHHOA 3XCIOHEHUHAILHON MHTETPANbHOR (YHKIMH ROKa3aHo, YTO Takoi
METOJl DEILCHHA B DACMETHOM OTHOUWCHHK Gonee 3ddexTHBen, 9eM GONBIIHHCTBO M3 NPHMEHACMEIX
MeTomoR peiueHHA. JINA cay4yas ¢ MOCTOAHMBIM BHYTPSHHMM MCTOMHHMKOM TENJIa $HCJICHHO DelleHa
3afiaua © PACOPENENEHHH TEMNEPaTyp M TEANOBCTrO NOTOKA B MONOCTAX ¢ PASIHYHBIMH 3HAYCHNAMH
ONTHYECKOH TOMIIMHLI H OTHOINEHMA CTOPOH. TIomydyéHBl 2HATHTHMECKHME pELICHHS B ONTHYECKH
ToHkoM Tipeaene. [ToxasaHo, YTo kak ONTHYECKAA TOJILUHHA, Tak K [€OMETDHUA NMOJOCTH OKa3bIBAIOT
CYIIECTBEHHOE BIMSHHE HAd DacCPelCIEHHE TeMnepaTyp & cpede. C Apyroil CTODOHBI, BENHYHHZ
YCPENHEHHOTG TENJOBOrO NOTOKA B PA3IHRIX HANPABNECHMAX, NO-BHAHMOMY, 32BHCHT B OCHOBHOM OT
TeOMETPHH TOJIOCTH.
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