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Abstract—An approximate method is developed for the study of radiative transfer in one-dimensional. ;
non-planar systems. While this method can be regarded as an extension of some existing approximation i
techniques formulated for the one-dimensional planar problem, it does yiel closed-form exgressions for :
the radiant heat flux and the temperature profile for various non-planar problems, which have not been
established before. Comparisons with the available numerical results show that the heat-flux expressions
are accurate throughout the entire range of the optical thickness. Results for the temperature profile.
however. have the same limitation as the various closed-form approximate sofutions for the planar problem.
They are not very accurate at regions near the boundary. except in the optically thick limit. Based on the . [
closed-form expressions obtained for the nom-planar radiative transfer problem. the present work
establishes readily the effect of the various parameters. such as the optical thickness. the surface
emissivity. the radius ratio and the-heat-generation rate on the heat-transfer and thie temperature profile.
Differences between radiative heat-transfer characteristics of the two basic non-planar systems (concentric
cylinders and concentric spheres) are discussed.

1. INTRODUCTION

Comparep to the problem of radiative transfer in a one-dimensional plarar medium, radia-
tive transfer in systems with cylindrical or spherical geometries has received very little atten-
tion despite its practical significance. The major difficulty of the non-planar radiative transfer
problem lies in its great theoretical complexity. Solution techniques, which were successful in
obtaining the exact solution for the one-dimensional planar problem, are shown to be extremely
complicated when applied to the non-planar problem." Many of the existing approximation
methods, such as the diffusion approximation,” the moment method® and the differential ;
approximation,® which yield accurate heat-flux predictions for the one-dimensional planar
problem, are not directly applicable to the non-planar problem. All of these approximation i
methods give inaccurate heat flux predictions in the optically thin limit. Numerically, compu-
tation for the non-planar radiative transfer problem is a very formidable task. In separate
independent studies, RyuMmng™ and Usiskiv et al® solved the problem of radiative equilibrium
in a concentric spherical enclosure utilizing a direct numerical integration technique. Their ;
results show that the computation can be quite tedious and lengthy because the governing
equation for radiative transfer is singular and generally not well suited for a direct numerical
integration. HoweLL and PerimuTTeR® applied the Monte Carlo technique to the problem of
radiative equilibrium in a concentric cylindrical enclosure. But their success is also quite limited
because the computation can become very lengthy in the optically thick limit and inaccurate in
the optically thin limit. Extensive parametric study of the non-planar radiative transfer problem
based on these numerical computations seems very difficult and impractical.

The ob]ectlve of the present work is to develop an approximate solution for the non-planar
radiative transfer problem which is applicable for all values of the optical thickness. Utilizing
results of the existing approximations®'™ for the one-dimensional planar problem and a
differential formulation of the radiation intensity recently developed,'” closed-form expres-
sions for the radiant heat flux and the temperature profile for problems of radiative transfer in a
concentric cylindrical enclosure and a concentric spherical enclosure (both with and without
heat generation) are obtained. Comparing with the existing riumerical solutions,”® the various
heat flux expressions are shown to be quite accurate throughout the entire range of the optical
thickness. The accuracy of the various temperature_proﬁles is less satis’factory. Similar to
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results of the many existing approximations for the one-dimensional planar problem, tempera-
ture profiles developed in this work are generaily not very accurate near the two boundaries,
except in the optically thick limit. _

Based on these closed-form approximate expressions, the present work establishes readily
the effect of the various physical parameters such as the surface emissivity, the optical
thickness and the radius ratio on the heat transfer and temperature profile results for the two
considered non-planar radiative transfer problems. The radiative heat transfer characteristics of
the concentric cylindrical enclosure and that of the concentric spherical enclosure are also
compared and discussed.

2. PHYSICAL MODEL

The present work deals with the problem of one-dimensional radiative transfer in enclosures
with non-planar geometry neglecting the effect of conduction, Two particular geometries are
considered, concentric cylinders and concentric spheres. For simplicity. the two boundaries are
assumed to be isothermal, gray, diffusely emitting and reflecting surfaces of the same emissivity.
The space between the two surfaces i is assumed to be filled with an isotropic, homogeneous.
absorbing and emiiting medium with a constant absorption coefficient and uniform heat
generation. Since these problems have no angular dependence, coordinate systems for the two
considered geometries are identical. They are illustrated in Fig. 1.

With no angular dependence, the governing equation for the one-dimensional non-planar
radiative transfer problem is the following familiar energy conservation relation:

%[Q,r"]= Sr'. (1

where r is the radial coordinate, Q, the radiant heat flux in the radial direction and S the
internal heat generatlon rate. By setting n = 1 for the concentric-cylinders problem and n =
for the concentric- spheres problem, eqn (1) is applicable to both non-planar cases.

Utilizing the radiative transfer equation® and the differential formulation of the radiation
intensity,"” eqn (1) can be rewritten in the fo!]owing form in terms of the gas temperature:

3 (53) 720 [P+ = -2, @

where a is the absorption coefficient, o the Stefan=Boltzman constant, T the gas temperature
and V? is the Laplacian operator defined as

v-tilr ] | 3)

T=0
€2

Fig. }. Coordinate system for the one-dimensional non-planar problem.
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with n =1 for the case with the concentric cylinders and # = 2 for the case with the concentric
spheres.
Introducing the dimensioniess variables
q=erU'T|4. 8= T!Ti. p=ar.
sz = (llaz)lvz. T64 = Sfaar. 9(,- = Tg’Tl.

where T, is the reference temperature defined in Fig. 1, eqns (1) and (2) can be rewritten in the
following dimensionless form

4

i ny_ g 4.n
dp[qp]—ﬂap- (1a)

gn (ﬂ%ﬁ)wf“”ﬂ = 65" (2a)

The boundary condition for eqn (2a) is the intensity boundary condition or. for the
differential formuiation, the multi-moment boundary condition."™ It is interesting to observe
that, by choosing the boundary condition to be 7%= T,*~ T* at the inner wall and T*= 0 at the
outer wall as shown in Fig. i, the two solutions obtained by setting To =T, and Tg=0
represent the two fundamental solutions of the one-dimensional non-planar problem. The
solution to the problem with arbitrary surface temperatures and heat generation rates can be
constructed by superposition of these solutions.

As was mentioned, an exact solution to the one-dimensional non-planar radiative transfer is
quite difficult to obtain. The current work presents an approximate analysis.

3. APPROXIMATE SOLUTIONS

Radiative transfer between two concentric cylinders _ .

Limiting solution. In the limit of rfr.— 1.0, where r, and r, are, respectively. the radius of
the inner surface and the radius of the outer surface, the problem of radiative transfer in a
concentric cylindrical enclosure becomes identical to the one-dimensional planar problem. The
curvature effect is negligibly small. The governing equation and boundary conditions at the two
boundary surfaces are reduced to those for the planar case. To obtain an approximate solution
for the concentric cylinders problem when the value of r/r is close to upity, the existing
approximation techniques“'” for the planar problem can clearly be applied.

Consider the case with no internal heat generation (8; = 0): the success of the existing
approximate solutions™'"” for the one-dimensional planar problem suggests that the temperature
profile within the concentric cylindrical enclosure can be written as

8= A+ Bp. : 5
The heat-flux expression, neglecting the curvature effect, becomes®'®
=_‘_1§0_4_ﬂd364_... (6)
3dp Sdp°
At r=ry and r = r,. the radiant-heat fluxes at the two cylindrical boundaries are
4
qlr) = —513. : M
4
a(n)==3B(rfr), (8)

where the energy conservation relation has been used to obtain eqn (8). The two parameters A
and B can be obtained by observing the heat-flux boundary condition. Utilizing the differential
formulation,"? this boundary condition is

ar=af1-g-30 180 ] ©

(10)

4 294
q(r3)=63[94—2d6 1d% _]

3dp T4
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where €, and ¢, are the inner surface emissivity and the outer surface emissivity, respectively.
Substituting eqns (5), (7) and (8) into eqns (9) and (10) yields the following relations:

_AB g2

D | TA P38 fan
4 . 2

_3GZB—A+ﬁp2 3B1 (12)

where D= r/r,, p;=ar, and p, = ar.. Solution to eqns (11) and ([2) can be easily obtained.
Limiting approximate expressions for the heat loss from the inner cylinder and the temperature
profile are given by

1

q(n)= T 3 (i3)
II£;¢D.(E—Z—1)+ZDP13 |
4 2
3, 3TP27P

= . (14)
4 4 4 ~

3_EID+§;_‘2'“§+PQ

where pi2= p;— p. But, because of the D— 1 assumption, the application of eqns (13) and (14)
is quite limited.

General solution. The important advantage of the above limiting approximate solution is
that it can be easily generalized to obtain a solution for an enclosure with arbitrary values of D.
Physically, a concentric cylindrical enclosure can be subdivided into many cylindrical subsec-
tions with infinitesimal thickness. The ratio of the inner radius to the outer radius for each
subsection is effectively unity and the above approximation procedure can then be applied. By
combining solutions for the different subsections, an approximate sofution which is applicable
for all valies of D can be constructed.

To illustrate the generalized approximation procedure mathematically, consider the sub-
division of the enclosure into n sections as shown in Fig. 2. The temperature profile is assumed
to be represented by n distinct linear expressions as follows:

I)Piz sSpsp +Vp]_ (15)

84=1\,+B,p, pl+(

with »=1,2,...,n The values of A, and B, can be obtained by observing the heat-flux
conservation condition at all of the (1 + 1) boundaries and the temperature-continuity condition
at the (1 — 1) boundaries away from the two cylindrical surfaces.

At the surface of the two cylinders, the heat-flux boundary condition is represented by the

€
Fig. 2. Subdivision of the non-planar enclosure into # sections for the generalized approximate solution,
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following pair of expressions which are similar to eqns (11) and (12):

36'»31"1 A= Bip— 3131, (16)

_'EﬂnT—An+Bnp2q2l3Bﬂ' (1n
As in eqn (11), the left-hand side of eqn (17) is the result of the energy-conservation condition
at the nth section.
At the remaining {n — |) boundaries away from the two cylinders, it is necessary to consider
the heat-flux condition between two adjacent layers of gas. Again utilizing the differential
formulation,"? the general expression for this boundary condition can be written as

@ (p. + ”"‘2) [ f id, A0+ I i, d(l] , (18)
o ju) p=pytivpyain)
with

4

i\ = [9‘—ﬂ:,+ ] :

ar PIHtv—1)mpaspSpi+nipy
: 4

_= [8“ - L+ ] .

ar p+HNIp xSp g v+ Dinlppa

where dQ) is the differential solid angle, I, the directional cosine in the radial direction and
v=1L2,...,n—1 In terms of the unknown coefficients A, and B,., eqns (18) ,lbecome

+(r—1 22
-38 -‘);,J,((T,,:p’; =h+ Bu(pr+ B2 =SB, ks
-,Bm(pl p”) 5Bon. oo (19)
with v=1,2,..., n— 1. But, physically, the gas temperature is contmuﬁus acrc;ss the boundary
between the two identical layers of gas. It reqmres
A +-'.6v (pl +'3,;~2) + A+ B (p. + %) (20)

for all values of v. Equation (19) can thea be simpli-ﬁedito

Ty 2k
g, PEOEDRT
ELL T .——gﬁu—gﬁun ‘ (21

with v=1,2,....0—1.
In the limit of 7 -0, a simple addmon of the (n + 1} boundary condltlons represented by
eqns (16), (17) and (21) yields the foIlowmg relation:

,B; 3Bl 36 Brt — A+ 4, = Bipi+ Bupa. (22

It is interesting to observe that eqn (22) involves only the approximate temperature profile at
sections adjacent to the two cylindrical surfaces. To relate the four unknown coefficients A 1 B
A, and B, further in eqn (22), the temperature-continuity condition at the boundary between
adjacent gas layers and the conservation of energy within each subsection are considered in the
limit of large .

For large value of n, the two unknown coefficients at each subsection can be treated as
continuous functions, A{p) and B(p). The temperature-continuity condition, represented by eqn
(2) when n is finite, takes the folIowmg differential form:

Alp)+ Blp)p = A(p + dp) + B(p +dp)p. (23)
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Expanding A(p + dp) and B(p + dp) by Taylor’s series and taking the limit with dp— 0. eqn (23}
is reduced to

a2, 88, =0 (24)

By a similar argument, the conservation of energy within each infinitesimal subsection. which is
utilized to obtain the left-hand side of eqns (17) and (21), can be expressed as

dl 4 _
d1-380r|=0. 25)
Equations (24) and (25) can be easily integrated to obtain
M@Y= Ao+ Buprln (2) = oo 6)
)
=B, (2 27
80)= B p). an

where p,, =(pl+p2));2. A, = Alpa) and B, = B(pa). Evaluating eqns (26) and (27) at the inner
cylinder and substituting into eqn (22) and (17). solutions for A, and B8, are readily obtained.
These are

_ , 1
B="3 7 3 +(lnD) ’ (28)
36, 3 3eD  \l-D/P?
—p_4 |2
\ = 7 3 3 9)

4 4 4 (ln D ) '

3673 36D \1-D/P?

The heat loss from the inner cylinder and the temperature profile within the enclosure, based on
this generalized approximation procedure, become

q.(r)— L
AL i 4 (InD
Lep(g-1)-30(;25)en

4.2 2
9t = 3ex 3 paln (Pz)
4 4 4 InD

3 3 36D (1-D)F"”

(30)

(31

Equations (30) and (31) are applicable for all values of D.

For the case with internal heat generation (8 = 1.0), a similar argument can be applied. The
existing approximate results"” for the planar, one-dimensional problem suggest that the
temperature profile can be closely approximatéd by

9*= A(p)+ B(p)p — pu Y. ‘ ' (32)

Combining the heat-flux boundary conditions at the two cylinder surfaces and at the interface
between adjacent infinitesimal cylindrical gas elements yields the following analogous relation
to egn (22):

- £12

4 4 4
_ie—zpllﬁn'i"jpllﬁn”l'g e, P

(33)
— p%Z 4 2 r r
= Ay -'-A|+(ﬁn—ﬁ|)—4"+§ Blpdp'.
Py
where A, = A(p2). A;=A(py), B = Blp2} and By = B(p1). Applying the temperature-continuity

condition and the conservation of energy, two differential equations in terms of A(p) and B(p)
can again be obtained. They are
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da_dg o
=[-8 |- 35)
dr 3 p m "
Solution of egns (34) and (35) gives
N 3 3\ (1n 2 1&_1&")
A(p} = l\n 16 Pm(P P:)-I- (p]ZBnp2+ ] [4) )(ID p2+ 2 P 2 PR y (36)
B b+ (o7~ )
b= PP~ Pum) 37

Substituting eqns {36) and (37) into eqn (33), the solutlon for B, can be easily obtained as
follows:

1 4 InD 1 3PlzIﬂD 3 p|2
_3 eD (1+D(1-D) 2(1+D) 41-D)(1+D) 81—
P=3(1+D) 1_,, 1 1D 3p,hD (38)

PR aD 1D 4(1- D)

Equation (38), together with the heat-flux boundary condition at the outer cylinder represented
by eqn (17), leads to the following expression for A,

4 2
Au*ﬁn[ &_3?9124"3'[’12_]]- (39)

Physically, the most interesting quantity for the concentric-cylinders problem with internal
heat generation is the fractional heat loss to the outer cylinder defined by

_ Gr)2mr,
ECar “

Utilizing eqns (38) and (39), ® can be written explicitly as

1. hD 1 3D 3 pp,

D (1+D(1-D) 20+D) 41-DY(1+D) 8(I—D) ‘
&= (41)

_1__ F oo 1 +]nD_§plzlnD

(3] €|D 1+D 4(1‘_D)

The dimensionless temperature profile within the enclos_ure becomes
2
_—(1+D)‘D[ PI” 3P|2+1"P|2P21ﬂ"‘“‘]

(42)

+ %[Pzz In —+ 5 (Pzz - Pz)]-

As for the case without internal heat generation, eqn (41) and (42) are applicable for all values
of D.

Radiative transfer between two concentric spheres

Following the same argument as in the previous section, an approximate solution for the
radiative transfer problem between two concentric spheres may be obtained. In fact, every
equation in the previous section can be applied to the concentric-spheres problem with the
exception of the energy-conservation relations. for the case without mternal heat generation
(8 =0), eqn (25) is replaced by

dl 4 _ :
d—r[“gﬁ(P)rz] =10, (43)
For the case with internal heat generation (8 = 1.0), eqn (35) becomes

QSRT Vol. 19 No, 5~F
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a[_ 8

HF[_E BloXp -~ p..,)rz] =r. (44)

Because of its obvious similarity to the concentric-cylinders problem, the algebraic detail of the

calculation for the concentric-spheres problem will not be presented.

The heat loss from the inner sphere and the temperature profile for the case with no internal
heat generation are given by

=T T3 (45)
D (eT 1) 5+ Dpn
o* e 2 47°Lp (46)
1L 30
€3 E]D 4D

For the case with internal heat generation {8 = 1.0), the fractional heat loss to the outer sphere
and the temperaturé profile become

(IJ¥' d,tr;_)!iwrf
af3m(ry - r.l)

. 2wD _ _(-3p=1D%) 1 . 3pu(+D)
_{=D)1+Dy DU+ DNi-D)  &D 8DA+D+D) - n
2mD _(1+D) 1, 1 . 3pn ’
(+DY DA+D) & &D* 4D
o=Yarp+pye[Lps-2 (ﬂ__) ] 3.2 1el 1o
6 4(‘+D+D)¢,[3ezpll 3P12+PIEPI P 1 +l +8P2 4 p 8.0 (48)

As for the concentric-cylinders problem, egns (45)-(48) are applicable for all values of D.

- 4 RESULTS AND DISCUSSION ]

Heat-flux results based on eqns (36). (41}, (45) and {47) are illustrated in Figs. 3-8. Some
typical temperature profiles based on eqns (31), (42), (46) and (48) are presented in Figs. 9-16.
Exact solutions, if availdble, are-presented together with the approximate result to demonstrate
the effectiveness of the present approximation.

Comparisons show that the approximate heat fiux is generally quite accurate for all values
of D, pi2 and € (for simplicity, the two surfaces are assumed to have the same emissivity of €).
Unlike results of existing appro;himation'techniques, our heat-flux prediction reduces to the
correct result in the optically thin limit. The accuracy of the temperature profile, on the other
hand, is less satisfactory. It shows the same difficulty as the various traditional approximation
techniques™™® for the planar problem. Approximate results for the gas temperature near the
two boundaries are not very accurate. But the accuracy improves as the optical thickness
increases. o . :

" "Some useful physical information concerning the two non-planar radiative transfer problems
may be derived from the results shown in Figs. 3-16. Some of these conclusions have also been
obtained by other investigators.®* Figure 3 shows the heat transfer between concentric black
cylinders and concentric black spheres without internal heat generation. The results show the
familiar trend of decreasing heat transfer with increasing optical thickness. [n the optically
thick limit, the present approximation gives the following heat flux expressions for the two
non-planar geometries: :

WD-10 . . :
1 CAnt 1 4
q.(r) ~— 7D n Dpn for concentric cylinders, (49

. and

qr(rl) —_—

— iDpm for concentric spheres, _ (50
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Fig.3. Effect of radius ratio on heat-transfer results for the one-dimensional, non-planar problem with no heat
generation.
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Fig. 4. Effect of the wall emissivity on the heal-transfer result for the one-dimensional. non-planar problem
with no heat generation.

It is interesting to observe that the above approximate limiting heat-flux expressions give the
same 1/pi; dependence as various approximate heat-flux expressions for the one-dimensional
planar problem. There results suggest that, in the opticaily-thick Hmit. radiative heat transfer in
non-planar enclosures does not differ significantly from the planar case. The non-planar
geometry introduces only a constant multiplicative factor on the optically-thick limiting
heat-flux expression.

In the optically-thin unit, the heat-flux expressions represented by eqns (30) and (48) are
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Fig. 5. Fractional heat loss to the outer cylinder for the concentric-cylinders problem with heat generation.
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Fig. 6. Fractional heat loss to the outer sphere for the concentric-spheres problem with heat generation.

reduced to
g{r)—— .1 for concentric cylinders 53))
P e+ D{——1
and
arlr}— _ Y for concentric spheres. (52

€3
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Fig. 7. Effect of wall emissivity on the fractional heat loss 1o the outer cylinder for the concentric-cylinders
problem with heat generation.

0.20 T T F |
n/ry 0.5
s PRESENT SOLUTION
1 © NUMERICAL SOLUTION, €-€,21.0 &
o
85— ™
o

¢
0.80
075
070 ] 1 | i
o} b 2 3 4 5
Pl2

Fig. 8. Effect of wall emissivity on the fractional heat loss to the outer sphere for the concentric-spheres
problem with heat generation.

It is interesting to note that these expressions are in agreement with the well known solutions
for radiative exchange with no participating medium in concentric cylindrical and concentric
spherical enclosures."”

Figure 3 also illustrates the effect of the radius ratio D on the heat-transfer result for
non-planar systems. Resulis show that, for both non-planar cases, a decrease in the radius ratio
increases the heat transfer. Physically, this phenomenon can be explained by observing that the
energy emitted by the inner surface can be partially reabsorbed because of the radiative
absorption and re-emission by the enclosed gas. The amount of energy reabsorbed by the inner
surface depends on the area ratio between the inner and the outer surfaces. In terms of the
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radius ratio D, area satios for the tWo ‘pon-planar systems considered here are given by .
A, =D for concentric sphere. A (53
. (54}

for concentric cylinder.

A.=D
| area ratio. Only a sm

all amount of the

In both cases, a small radius ratio indicates a smal



Approximate solutions of radiative transfer in one-dimensionat non-planar systems 545

0.25 .
\ 1 I i |
\ nERe0d, p|2=2.0
\\ —— PRESENT SOLUTION
\ \ ———NUMERICAL SOLUTION (2
0.20 .

ols
84
Q.10
D05
ol I | I 1
0 D.2 0.4 0.6 0.8 1.O
(P P, )
Pra

Fig. [1. Effect of wall emissivity on the iemperature profile for the concentric-cylinders problem with no
heat generation.
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Fig. 12, Effect of wall emissivity on the temperature proﬁlé for the cencentric-spheres problem with no
heat generation.

energy emi_tted by the inner surface can be'reabsorbed. The heat transfer is thus large for small
value of D and g.(r}= 1.0 as D~0. As D increases, the area ratio also increases and more
energy can be reabsorbed by the inner surface. The heat transfer is less and approaches the
planar solution in the limit of D - 1.0. i ‘ o )
Results in Fig. 3 also show that, for fixed values of D and pi2, heat transfer between two
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Fig. 13. Effect of radius ratio on the temperature profile for the concentric-cylinders problem with heat
generation.
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Fig. 14. Effect of the radius ratio on the temperature profile for the concentric-spheres problem with
uniform heat generation.

concentric spheres is larger than that between two concentric cylinders. This can be explained
by noting that, from eqns (53) and (54), A, is less than A for a given set of values for D and
pi2 The extent of the inner surface in a concentric spherical enclosure is effectively less than
that in a concentric cylindrical enclosure. The reabsorption effect described above is thus small
and heat transfers more readily in a concentric spherical enclosure.

The effect of wall emissivity on the heat-transfer result for the case with.no internal heat
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Fig. 16. Effect of emissivity on the temperature profile for the concentric-spheres problem with uniform
heat generation. ‘

generation is illustrated in Fig. 4. Physically, a decrease in the wall emissivity means that a
larger fraction of the energy emitted by the inner surface can be reabsorbed because of
reflection by the outer surface. Heat transfer therefore decreases as the wall emissivity
decreases. For small emissivities, these reflection and reabsorption processes become dominant
and heat transfer becomes relatively independent of the optical thickness.

Figures 5 and 6 show the heat transfer result for the case with internal heat generation and -
zero wall temperature. These results indicate that, for both non-planar cases, the fractional heat -
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loss to the outer surface. ®. in the oplicaily-thick limit is only 8 function of the enclosure
geometry and is independent of the optical thickness. Utilizing eqns {41) and (47). these limiting
expressions are given by

|

l * .
@ —"‘"pu_# - Dz)+ 5 D for concentric cylinders (55)

and

® 2+ D)

_exh _ )
o 20+ D+ DY) for concentric spheres. (56)

Physically, the above result is not t00 surprising because. in the optically thick limit. radiative
heat transfer becomes a jocal phenomenon. As for heat conduction, the heat-loss distribution Lo
the two bounding surfaces depends only on the enclosure geometry. As the optical thickness
decreases, the radiative effect becomes non-localized. The heat-loss distribution becomes mofe
dependent on the optical thickness. Resulis show that the fractional heat loss 10 the outer
surface increases because the larger outer surface can be more readily seen by the enclosed
gas.

Results in Figs. 5 and 6 also illustrate some interesting effects of the radius ratio D on the
heat-transfer result. As the radius ratio decreases, the fractional heat loss t0 the outer surface
increases because of the effective decrease in the area of the inner surface. In the limit of
D0, all of the heat generated within the enclosure is absorbed by the outer surface because
of the small inner surface area. In the limit of D~ 1.0, the non-planar problem reduces to the
planar case. An equal amount of energy is transferred to each surface. It is interesting 10
observe that, for 2 given set of values of D and pr. the results in Figs. 3 and 6 show that the
fractional heat loss to the outer surface of a concentric spherical enclosure is larger than that of
a concentric cylindrical enclosure. This phenomenon can again be explained by noting the
difference between the area ratio of the concentric cylindrical enclosure and that of the
concentric spherical enclosure. Since As is less than Ac the outer surface of a concentric
spherical enclosure represents 2 jarger fraction of the total surface area than that of a
concentric cylindrical enclosure. The enclosed gas is exposed to more of the outer surface ina
concentric spherical enclosure. Heat loss to the outer surface is thus larger.

Figures 7 and 8 demonstrate the effect of the emissivity on the heat-transfer result with
internal heat generation. It is interesting to observe that, for a small optical thickness, 2
decrease in the emissivity reduces heat loss to the outer surface. The opposite pehavior is
observed for an enclosure with a large optical thickness. This result obtains because. physically.
a small optical thickness represents small gas absorption. The energy generated within the
enclosure goes directly to the two bounding surfaces. The energy reflected by the inner surface
is partially absorbed by the outer surface while the energy reflected by the outer surface is
partially absorbed by the inner surface. But, as may readily be shown by a simple “image”
analysis, the net result of these multiple-reﬂections is an increase in the heat loss to the inner
surface. A decrease in the emissivity thus reduces heat loss to the oufer surface. A large optical
thickness, on the other hand, represents large gas absorption. The energy reflected by the two
walls is mainly absorbed and reemitted by the gas. Since the gas is in more direct contact with
the outer surface, 2 maijority of this reflected energy. is reabsorbed by the outer surface. Heat
transfer to the outer surface thus increases with decreasing wall emissivity when the optical
thickness is large.

The effect of the radius ratio on the gas temperature for the case with no- internal heat -

generation is shown in Figs. 9and 10. As D decreases, the gas temperature decreases because
the gas is influenced more by the cold outer surface. For given values of D and py2. the gas
temperature in a concentric spherical enclosure is lower than that in a concentric cylindrical
enclosure, again because there are proportionally more outer surface areas in a concentric
spherical enclosure.

The effect of wall emissivity on the gas temperature for the case with no heat generation is
shown in Figs. 11 and 12. The result presents no surprises. The multiple reflections of the radiant
energy by the two bounding walls smooth out the temperature profile as the wall emissivity
decreases.
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For the case with internal heat generation, the effect of the radius ratio on the gas
temperature is illustrated by Figs. 13 and 14. In the limit of D-> 1.0, the temperature profile is
reduced to that of the parallel-plate case and is symmetric about the midpoint between the two
surfaces. When D < 1.0, the area of the outer surface is larger than that of the inner surface.
The energy generated at the region near the outer surface is released more easily to the adjacent
boundary than the energy generated near the inner surface. The gas temperature near the inner
surface is therefore high while the gas temperature near the outer surface is low. These results
explain the temperature-profile behavior shown in Figs. 13 and 14.

* Finally, Figs. 15 and 16 demonstrate the effect of wall emissivity on the gas temperature for

the case with internal heat generation. As the wall emissivity decreases, the gas temperature
increases because higher gas emission is needed to release the constant amount of energy
generated within the enclosure. As for the case with no heat generation. the temperature
distribution is more uniform because of multiple reflections of radiant energy by the two
boundaries. S

5. CONCLUSION

Utilizing results of existing approximations for the one-dimensional planar problem, closed-
form expressions are derived for the heat transfer and temperature profiles for the one-
dimensional, non-planar problem. These expressions compare favorably with available numeri-
cal solutions. The heat-flux expression is shown to be accurate for all values of the optical
thickness. The temperature-profile expressions are also quite accurate, except at the region near
the two boundaries.

The optical thickness, the surface emissivity and the radius ratio are shown to have some
interesting and significant effects on the heat-transfer and temperature profiles for the one-
dimensional, non-planar problem. The radiative heat transfer characteristic of a concentric
spherical enclosure and those of a concentric cylindrical enclosure are found to exhibit some
interesting differences because of geometric differences between the two enclosures.

REFERENCES

1. R. D. Cess, Z. Aangw. Math. Phys. 17, 776 (1966).

2. M. A. HeasLet and R. F. WarMING. JOSRT §. 669 (1965).

3. M. A, Heaster and R. F. WarMinG, JOSRT 6. 751 (1966).

4. R. G. DissLEr, J. Heat Transfer C86, 220 (1964),

5. Y. 8. Crou and C. L. TIEN. JQSRT 8. 919 (1968).

6. E. A. DENNAR and M. S1BULKIN, J. Heat Transfer C91. 73 (1969).

7. 1. L. RYHMING, Int. J. Heat Mass Transfer 9. 315 (1966). )

8. E. M. Sparrow, C. M. UsiskiN and H. A. HUBBARD. J. Hear Transfer C83. 240 (1961),

9. M. PERLMUTTER and J. R. HOWELL. J. Heat Transfer C86. 169 (1964), ]
10. W. W. Yuen and C. L. Tien, A differential formulation of radiative transfer with multi-moment boundary conditions.

J. Heat Transfer, to be published.
11. R. SieceL and J. R. HowgLL. Thennal Radiation Heat Transfer. McGraw-Hill. New York (1972).



g



