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Fig. 2 Total Nusselt number for horizontal tube

results within about 10 percent of the numerical calculation. Note that
values for the region z/D < 0.3 are not shown because a bubble is
normally attached there.

The total Nusselt number for an immersed tube can be approxi-
mated using the model by neglecting voidage variations so that the
gas velocity is

2
QJ ~ —sin{ (22)
€
where ! is measured from the lower stagnation point. Then, with 8
=~ 0.13u” v/Rep/¢, integration of equation (12b) gives

(0.()9[7 + 0.154 (:—p - 1))Re,,
P

(S(,N,,ﬂ(:i] (1.405 + 5.68“"“"49“"/[“’/‘)

14

(Nup)rotal =

2.5y
+ o
(Sp/rp)

Now, considering air (Pr = 0.7) low temperature operation (so that
So = 1.0), turbulence intensity, u’ = 0.2, and using the correlation of
Wen and Yu [5] for Re, with ¢ = 0.57 (the average surface value) the
variation in total Nusselt number shown in Fig. 2 is obtained. Shown
with the approximation are exact numerical results, an experimental
correlation developed by Baskakov and Suprum [6] and experimental
data obtained by Catipovic [3] and Canada [7] for operation near
minimum fluidizing conditions. The major source of error in the ap-
proximation is the assumption of constant voidage, but the error is
still at most 15 percent for the range of parameters indicated.

(3.81 — 1.6 (Eﬂ - l)) (23)

Tp

Conclusion ‘

The approximate Nusselt number obtained using equation (13)
provides a reasonable alternative to the numerical procedure devel-,
oped by Adams and Welty {1] for local gas convection dominant
Nusselt number. Integration of the approximate formula for heat
transfer to an immersed horizontal tube with constant voidage pro-
vides results which do not match exact results with variable voidage
but are within about 15 percent of those results and experimental
data. '
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Application of the Integral
Method to Two-Dimensional
Transient Heat Conduction
Problems

W. W. Yuen® and R. A. Wessel!

Nomenclature
F = function defined by equation (8)
t = time

u = transformed coordinate defined by equation (4)
v = transformed coordinate defined by equation (4)
x = coordinate

v = coordinate

« = thermal diffusivity

0 = one-dimensional penetration depth

n=u/d

0 = temperature

Introduction
In the field of heat transfer, the integral method is one of the most

. powerful solution techniques. For practical engineering applications,
* the method is used to generate approximate closed-form solutions.

The effect of system parameters and the.importance of various di-’
mensionless groups can be readily demonstrated. For many numerical
computations, the integral method is used to generate small-time
solutions which otherwise are very difficult to obtain. Review of the
integral method and its application to both linear and nonlinear heat
transfer problems is available in the literature [1].

The objective of this work is to show that the integral method can
be generalized to apply to the two-dimensional transient conduction
problem. The problem of a rectangular corner with uniform initial
temperature is solved as an illustration.

Mathematical Formulation

The physical model and its associated coordinate system for the
rectangular-corner problem is shown in Fig. 1(a). For simplicity, all
thermal properties are assumed to be constant. The conduction
equation is

% 0% 108
— =

- (1)
ox?2 oy «aot

.with @ being the temperature and « the thermal diffusivity. The initial

condition is

O(x,y,t) =0 t <0, all x,y (2)
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Fig. 1 The original and transformed coordinate system for the present

problem

The boundary conditions for the two cases considered in the present
work are

0(0,y,t) =1
0(x,0,t) =1

The above initial and boundary conditions are obviously normalized
for simplicity. Since the problem is linear, solutions to problems with
unnormalized conditions can be readily generated by superposition
of the present results.

As they are, equation (1) together with the initial and boundary
conditions are practically impossible to be solved by the integral
method. Physically, application of the integral method requires the
existence of a characteristic length such that beyond this length, the
influence of the wall can be neglected. While it is clear that at any
given time there exists a certain interior region of the rectangular
corner which is relatively unaffected by the heated wall, the definition
of a “length” for the problem under the present geometry appears to
be extremely difficult, if not impossible.

This difficulty can be alleviated, however, if the following coordi-
nate transformation is utilized.

tz0, y=z0
t=0,

(3)

x =0

u=x%—y? (4)
v =2xy (5)

Mathematically, equations (4) and (5) represent the familiar con-
formal transformation [3] which is often used in the solution of the
steady state conduction problem. Physically, this transformation
maps the rectangular corner into the upper half plane as shown in Fig.
1(b). The curves u = const. and v = const. can be interpreted as the
flux line and potential line for the rectangular corner in potential
theory. In the transformed coordinate, equations (1, 2), and (3) be-
come

) 0% 2% 10
4(u? + p2)1/2 [~—,+—— =——~—Q (1a)
ou? ov? «ot
Au,o,t) =0 t <0, all u,v (2a)
O(u,0,t) =1 t=0 (3a)

- It is interesting to note that the transformed problem can now be
interpreted as the problem of transient conduction in a semi-infinite
medium with a spatially-dependent thermal diffusivity.

While a complete solution of equation (1a) together with its initial
and boundary conditions is just as difficult as it is for the original
problem, the transformed problem has the advantage that it is more
adaptable for the integral method. Physically, it is reasonable to as-
sume that for each value of u at time ¢, there exists a penetration
depth 6(u,t) such that & = 0 for all v > 6. As in the traditional integral
method for one-dimensional transient conduction problem, a tem-
perature profile can be assumed at each value of u. A differential
equation for 6(u,t) can be generated by an integration of equation
(1a).

Results

Similar to the one-dimensional transient conduction problem, the
temperature profile for the case with constant wall temperature is first
assumed to be a second degree polynomial as follows

3] 2
a(u,t)) ©)

‘O(u,u,t) = (1 -
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Substitute equation (6) into equation (1a) and integrate over v from
0 to 8, the following equation is resulted.

1 22 2 1 oF P
19% 2 1 9F(bu) 2 o
30u? 6 4a 36 Ot

The function F(u,8) in the above equation is defined as
1 1+ (1+9)Y% 3
F(u,d) = (1 -3 nZ) In [—(—ﬂ—] —SaHE 2 ©)

n

where 7 = ©/8. The boundary conditions and initial condition for
equation (7) are

9 (0,6)=10 ©

ou
lim 8(u,t) = (48uat)l/2 (10)
ou,0) =0 (11)

Physically, the problem is symmetric about the origin u = 0. Equation
(7) is thus needed to be solved only for cases with u > 0. Equation (9)
is the result of such symmetry. Equation (10) is based on the fact that
in the limit of large u, the present result should reduce to the one-
dimensional case which yields the following expression for the ap-
proximate temperature profile [4].

_1_¥ (12)
(12at)1/2

While an exact numerical solution to equation (7) is not difficult
to obtain, a closed-form early-time solution can be readily generated
by assuming that the second derivative of § is negligible. Equation (7)
can then be integrated to yield

O(y,t) = (1 -

2)1/
N L
0 n J
[ 201+ (1 +9H)Y2 - p)yt |
[(1+ (1 + 722 + m)(n + (2 + D12)?
7’2

————— (13)
[L+ (1+ )12

It is interesting to note that equation (6), utilizing the value of 6
generated by equation (13), already yields temperature distributions
compared favorably with the exact solution, particularly in the limit
of large u. The worst accuracy appears to occur at u = 0. Equation (13)
gives

8(0,t) = 8Bat (14)

Equation (6) becomes

0(0,0,t) = (1 - —U—~)2 (15)

Bact
Note that since the line u = 0 in the u-v plane corresponds to the line
x =y in the x-y plane, the temperature profile is only a function of
x. The exact expression of the temperature profile is available [2]. It
is

Hx,t)=1— [erf (16)

x 2
2(0zt)1/2]
Compared to equation (16), equation (15) is not very accurate, except
in the limit of small x and large ¢. But it still yields the correct quali-
tative behavior of the temperature profile.

Since equation (7) is of the same general form as a one-dimensional
transient conduction problem, its solution can be readily obtained
by any standard numerical computation routine such as the tri-di-
agonal algorithm. Results of temperature profiles generated by the
present integral method compare well with the available exact solutign
[2]. For the least accurate case at u = 0, approximate temperature
profiles at two different times are compared with the exact solution
in Fig. 2. The agreement is quite acceptable. The numerical solution
also suggests that for large values of at (at > 1), the penetration depth
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Fig. 2 Comparison between temperature profiles generated by the integral
method and the exact result for the problem with a constant wali tempera-
ture

at u = 0 can be approximated as

lim 6(0,t) — 16t

«t *oo

(17)

The temperature profile at u = 0 becomes

x2\2
f(x,t) = (1 - —) (18)
8at
Equation (18) represents a fairly accurate approximation for equation
(16).

Conclusion

Utilizing a simple conformal transformation which maps the region
of interest onto the upper half plane, the integral method is general-
ized to apply to the two-dimensional transient conduction problem.
Transient heat conduction in a rectangular corner subjected to a
constant temperature boundary conditions is solved as an illustration
of the method. Results compare well with the available exact result
and they are generated with little effort.
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The Temperature Distribution
of a Sphere Placed in a Directed
Uniform Heat Flux

K. A. Werley' and J. G. Gilligan'

Nomenclature

o = thermal diffusivity = —E—
Cp

B, v = eigenvalues

¢p = specific heat

d = density

F = heat flux

J = Bessel function

k = thermal conductivity

A, u = eigenvalues

m, n = summation indices

P = Legendre polynomial

p = radial position in sphere

r = dimensionless position = p/R

R = radius of sphere

T = time

. . . aT
t = dimensionless time = =

) = angle
T = temperature
T'o = initial temperature

Introduction

The purpose of this Technical Note is to solve analytically the
time-dependent heat conduction problem of a sphere, with uniform
initial temperature, located in a uniform field of directed heat flux.
To the authors’ knowledge, this solution has not heen displayed, but
is of interest in the area of magnetic thermbnuclear reactor engi-
neering. It has been shown that a “rain” of high speed liquid or solid
spheres (e.g., Lithium) can effectively remove over a magnitude larger
heat flux than a stationary solid wall while simultaneously gettering
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large fluxes of particles, therehy acting as a vacuum pump [1-3]. Thus,
the importance of this concept requires that an accurate description
of the temperature distribution be known so that vaporization rates,
thermal stresses, and particle trapping efficiencies can be calcu-
lated.

Problem Description

The problem of a sphere with an initial uniform temperature, T,
located in a field of directed uniform heat flux, F, is described by the
heat conduction equation in spherical coordinates (see Fig. 1):
10 ( 9 oT 1 o I . oT 10T
S | sinf = ——
plop { opl p?sinf ol { ol

X0<p<R,0Z0<m0=<7 (1)

o OT

It can be shown with simple geometrical arguments, that the directed
uniform heat flux transforms to a surface flux which varies as the
cosine distribution over the front of the sphere. Thus the initial and
boundary conditions can be written:

T(p,0,0) =Ty 2)
T{p, 6, 7) = finite, for arbitrary # and p (3)
F
—cosf, 0<f< T
oT 2
—(R,0,7) = (4)
op 0 T
, —<0=<nmw
2

The above set of equations describes the temperature distribution
in the sphere provided that the following four assumptions are valid:
(a) The material has constant, uniform properties (k, «, d, cp). (b)
The sphere does not spin relative to the directed flux. (¢) There are
no radiative heat losses. (d) There are no convection losses, either from
the surface or in the interior (for a liquid sphere).
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Fig. 1 Geometry
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