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ABSTRACT 

In this paper we first develop a new model for calculating the rate of heat transfer 
from a particle to a surrounding gas. The model, which assumes no relative motion 
between the particle and gas, is based on kinetic theory and is applicable at all Knurl- 
sen numbers. Then we use the result in a sample application in which a gas-particle 
suspension is radiantly heated. Both the temperature difference between the particles 
and gas and the rate of gas temperature increase are shown to have theoretical max- 
imums. Using the optical and thermal properties of carbon, some numerical ' results 
for a carbon particle/air mixture are presented. 

Introduction 

The rate of heat transfer from small particles suspended or immersed in a gas to the surrounding 

gas is an important quantity in many areas of research. It plays a role in determining ice formation in 

noctilucent clouds and in governing airborne aerosol equilibrium temperatures [1]. The aerosol particles 

may have a temperature tha t  is significantly different than that  of the atmosphere. This heat transfer 

rate is also important in combustion systems where soot or other particles are present [2]. A process in 

which knowledge of the particle-gas energy exchange rate is especially important is the use of small par- 

ticles suspended in a gas to directly capture solar energy [3]. At  Lawrence Berkeley Laboratory, this 

concept led to the development of SPHER (Small Particle Heat Exchange Receiver) [4]. It is this latter 
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application that  inspired this paper. 
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Heat Transfer Model 

The heat  transfer from a particle to a surrounding gas may be broken into three regimes depend- 

ing on the value of the Knudsen number (Kn), defined as X/d, where X is the gas molecule mean free 

path and d is the characteristic dimension of the body in the gas (d is the diameter  if the body is a 

sphere). For A'n < 10 -3 the continuum approximation applies and different equations are available to 

calculate the heat  transfer rate depending on whether  the losses are purely conductive, or also convec- 

tive, in nature [5]. For  Kn > 10 free molecular flow conditions prevail near the particle; again a fairly 

well recognized expression for the heat transfer based on molecular collisions exists [1]. In the transition 

region, 10 "3 < / in  < 10, analytical modeling of heat transfer is difficult because neither a continuum 

nor a kinetic theory approach is strictly correct. Currently, the s tandard approach to calculate heat 

transfer in this region is almost entirely empirical [6,7]. Three analytic t rea tments  [8,9,10] of this prob- 

lem are known to the authors, but their results do not appear to be in wide use. In the following, a sim- 

ple t rea tment  of particle-gas heat transfer is derived for arbitrary Kn; in particular, it applies in the 

transition region. 

The model used is the following: a spherical particle with radius a is stat ionary in an infinite gase- 

ous medium with temperature Too a8 r --~ oo (r is the radial coordinate with origin at the center of the 

sphere as illustrated in Fig. 1). The region around the sphere is divided into two zones. Outside a 

sphere of radius ) ,+a  continuum conduction is assumed to bold. Within one mean free path  of the sur- 

face it is assumed that  the gas molecules collide only with the particle and not  with one another. The 

effect of convection is neglected. The molecules striking the particle are assumed to have a Maxweliian 

velocity distribution at  temperature TB, the zone boundary temperature.  The particle is maintained at 

a fixed temperature Tp ; energy is supplied or removed by radiation or chemical reaction. Here the par- 

ticle temperature is assumed to be greater than the gas temperature,  but  the same analysis applies in 

the other  case. 

First,  the steady state  conduction equation is solved in spherical coordinates for the temperature 

field outside a radius of a+k. Using the boundary condition T = Too a~ r --* oo the solution is 

T = A + Too (1) 
r 

with constant  A to be determined. 

To find the energy being carried to the particle we first calculate its collision rate with the gas 

molecules. From kinetic theory, the molecular flux density crossing a plane in one direction (F) can be 

obtained, if a Maxwellian velocity distribution is assumed [11]. Applying this to the zone boundary, a 

total inward flow of 4~)~+a )2I" results. However, not all of these molecules strike the particle. If the 
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molecules are randomly directed as they cross the boundary, then an analysis similar to tha t  for obtain- 

Lag shape factors in radiation heat transfer will show that  only the fraction s2/(= +X) a will hit the parti- 

cle [12]. Thus the particle suffers 4~r=2r collisions per unit time. 

From kinetic theory, the average energy of a molecule striking the particle surface is 

~i~ + 2ks Ta,  where e,., is the internal energy if the molecule is not monatomic [11]. We note that  

2ks Ta ,  and not (3/2)ks Ta,  appears because faster molecules hit the surface with greater frequency 

than do slower molecules and carry more kinetic energy. The average energy of the colliding molecule 

multiplied by the collision rate gives the total energy into the particle. To calculate the energy flowing 

away from the particle, the energy of a molecule as it leaves the particle must be determined. From 

kinetic theory, if any adsorption potential is neglected, it can be assumed that  the molecules leave with 

a Maxwellian velocity distribution at  a temperature between Tp and Ta,  written as 

T,,~ = (Tp - T ~ ) a  + Ta, where a is termed the accommodation coefficient [13]. If cr = 1 (perfect 

accommodation) the molecules leave at Tp ; if a == 0 no energy is exchanged and they leave at T~. In 

principle, a may be different for translational energy exchange than for internal energy exchange; here 

an average c~ is employed. 
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Nusselt number vs. Knudsen number 

The average energy exchanged in a collision is (el,,(..,) + 2ke To,~ ) - (e~,,(n) + 2ks Ts). If we are 

in a temperature range where the specific heat is roughly constant with temperature this can he 

simplified to a(6', m g +  ka/2)(Tp - Ta ) where 6', mg T has replaced e¢~ + 3/2ks T ,  and 6', is the 

specific heat of the gas. Combining this with the collision rate gives 

Qo = 4~==. . . I  k"T" ]~ C2) 
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where Q¢ is the rate of heat transfer from the particle to the gas; note that  T~ is not yet  known. In 

steady state the total outward heat flow Q¢ is independent of r. Using equation (2) and the heat flow in 

the continuum region (obtained from differentiating equation (1 ) )  A can be calculated. With A deter- 

mined, the continuum temperature distribution (1) may be used to solve for Ta.  The result is: 

a ~  
Too + Tp 

Kn (2Kn + l)Tr (3) 
T B =  a ~  

1 +  
Kn (2Kn + 1)~r 

where Kn = )~/2a and 4' = 32/75 for a monatomic gas and 48/95 for a diatomic gas. Equation (5) 

gives the temperature one mean free path from the particle. In deriving equation (3) the thermal con- 

ductivity ha~ been replaced by its kinetic theory value [13]: 

f ks Ts I ~ 
, = c o . . , . . ,  × J (4) 

where the constant  is 25/16 for a monatomic gas and 19/16 for a diatomic gas. To obtain the constant 

the diatomic gas was assumed to have its rotational modes excited, but not its vibrational modes. 

Eucken's  formula with ~/ ~ 7/5 was used. If the molecule can also store energy in vibration (this 

depends on the gas and the temperature range), then the constant  must be adjusted. 

Now that  TB has been evaluated, it can be used in the expression for the heat transfer Q, giving: 

4aak c}( Tp - Too ) 
Q° = ~,~ (5) 

Kn + 
(2gn  + 1)~ 

As a check on the validity of equation (5), the limits as Kn approaches zero and infinity can be 

evaluated. As Kn - .  0 , Q¢ --* 4~¢ak(Tp - Too). If Q¢ is set equal to an equivalent convection loss 

4h ~a 2(T~ - Too) then 2ah / k  = Nu = 2, a familiar result from continuum heat  transfer for a motion- 

less fluid. 

As Kn --* cc 

Q¢ = 4aak--~--~n ( T  ~ - Too) 

where the fact that  TB --* Too as Kn  -* oo has been used. When k is replaced by equation (6) this 

becomes the formula used by Fiocco and Grams [1] corresponding to a temperature jump at the particle 

surface. 

The Nusselt number as a function of Kn can be calculated for the general case by setting Q¢ in (5} 

equal to 4h na2(Tp - Too) and solving for Nu = 2 a h / k .  This result is plot ted in Fig. 2. By finding 

the appropriate Kn, Nu can easily be determined from the graph. Also shown in Fig. 2 is a value of Nu 
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taken from Clift [6] for the transition region. Clift does not state the origin of this result, only that  it 

matches the data of Takao [8]. One final point to note is that  NI  decreases as Ka increases, and the 

heat flux per area from a particle is q ~ ( N u k / 2 a  )(Tp - Too). So as the particle is made smaller, q 

increases as long as Nu does not decrease faster than a (which it does not). This means that  it is increas- 

ingly ditflcult for a small particle to be at a different temperature than the surrounding gas as the parti- 

cle size decreases. (We ~dl see this also in the Application section.) Particles in the upper atmosphere 

may maintain different relative temperatures only because X is so large, which makes Nu small (see 

results of Fiocco and Grams). 

Application 

One application of equation (5) is in an energy balance on a particle in a radiant field. Consider a 

gas-particle mixture irradiated by an energy beam as shown in Fig. 3. A~suming that  the physical 

dimensions of the mixture is large compared to the particle radius, and utilizing symmetry, each particle 

can be considered as being surrounded by a unit cell of gas as shown in the same figure. The boundary 

of the cell is assumed to be adiabatic with respect to conduction heat transfer, but transparent to radia- 

tion. The energy balance of the particle and its surrounding gas within the cell can be written as 

.~,~.3p~ c__jT_ = Q. _ Qo _ Q, (8) 

dTo 
Mo C, y = Q~ (7) 

where a ,  pp,  C ,  and Tp are the radius, density, specific heat, and temperature of the particle. 

M#, Cp, and Tg are the mass of gas within the unit cell, the specific heat at constant pressure of the 

gas, and its temperature. Q~ is the conduction heat transfer from the particle to the gas. Qs is the 

absorption by the particle of the incident radiant flux. Qe is the overall radiant heat transfer between 

the particle and its environment. The gas is assumed to be optically transparent in the development of 

equations (6) and (7). In terms of the initial mass loading of the mixture G (which is defined as the m~s  

of solid per unit volume of the mixture), Mg can be written as 

4 3 , PP 
M~ = ~ p, .  t -  O- - 1) (8) 

with p~o the initial density of the gas in the mixture. Since the gas is assumed to be heated at  constant 

pressure, the volume of the unit cell increases with the gas temperature. 
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Assuming that the incident radiation comes from a blackbody of temperature Ti with and 

equivalent emissivity ~i, Q4 can be written as 

Q, = '~oZdT, ,= )Q, (9) 

where 

1 oo 
e ( T , a ) = - - - . ~ L  Q. , , ex t (T )d )~  

0.-1. ~ 
(1o) 

and 

Q~ = ~ i a T i '  (11) 

with Q~,  being the absorption cross section of the particle, and e xb ( T ) the blackbody emissive power. 

The mathematical  expression of Q ~ , ,  which is a function of the particle radius and optical properties, 

can be obtained from standard ~de theory [14]. In equation (11), e; includes the effect of geometry and 

also the "shadowing"  effect of the neighboring particles. For an incoming solar beam focused with a con- 

centrat ing factor ~, and assuming that  there is no shadowing from the neighboring particles, ~t" can be 

writ ten as ~; -~ 0.1245 X 10-4~. An atmospheric transmissivity of 0.6 has been assumed. 
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Absorption Efficiency vs. Size Parameter  for Carbon 

~ebs t0"~ 

In SPHER [3,4], a part icle/air  mass ratio of approximately 10 "4 (corresponding to a ma~s loading 

of G = 0.1 g / m  3) over an absorbing path length ranging from 0.6 to 0.9 m was observed to be 

sufficient for total absorption of the incoming solar radiation. In such applications, the ratio of the unit 

cell radius to the particle radius is typically greater than 100. The conduction heat transfer Qc is thus 

equivalent to tha t  between a particle and an infinite medium so that  equation (5) applies. 
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The radiative exchange between the particle and its environment is written as 

(12) 

with Too being an effective radiative temperature of the particle environment. Due to the uncertainty of 

parameters such as e~ and Too, additional specification of the physical environment of the particle is 

clearly required before solutions to equations (6) and (7) can be obtained. However, interesting conclu- 

sions regarding the general behavior of Tp and Tg can be generated by considering the qualitative 

mathematical behavior of the heat transfer terms Q. ,  Q¢. and Q,. 

From thermodynamic considerations, it can be readily observed that  dT, ~dr, Q~, Q,. and Qe are 

all positive-definite quantities. Since Q, is constant for a given particle size and geometry, and Qe 

increases with the temperature difference A T  ~ T~ - T e , the condition 

Q. - Q, _> o (la) 

yields a theoretical maximum temperature difference between the particle and gas for a given irradia- 

tion. For carbon particles, the absorption efficiency, ~ , ,  as a function of the particle size d and the 

particle size parameter 7rd/), is calculated from Mie theory and shown in Fig. 4. The dielectric func- 

tions available in the literature [15,16] are used in the Mie calculation. For each particle size q~.b, is 

calculated from a wavelength of 0.33 ~sm to 12.4 pro. Assuming that  results in Fig. 4 are applicable 

over all temperatures, and that  the accommodation coefficient in equation (5) is equal to l, the normal- 

ized theoretical maximum temperature difference ( ~ T m u / Q : )  between gas and particles can be found. 

The results are plotted as a function of particle diameter and gas temperature in Fig. 5, for solar irradia- 

tion with different concentration factors (note that  the incoming radiant flux is 1 kW/m 2 when the con- 

centration is 1). It is interesting to note that  both in the large and small particle limits, the maximum 

temperature difference is proportional to the particle diameter. The constants of proportionality, how- 

ever, are different due to the different controlling heat transfer mechanisms (continuum conduction and 

geometric absorption in the larse particle limit and free-molecular-flow conduction and Ray|eigh absorp- 

tion in the small particle limit). An increase in the gas temperature increases the maximum temperature 

difference for small particles but has the opposite effect for large particles. For an incident radiant flux 

of 100 kW/m 2 and particle size between 1 and 10 ~m, Fig. 5 indicates a maximum temperature 

difference of about 1 ° K. This is consistent with experimental observations [3,4]. 

In many applications (including the design of SPHER) it is important to estimate the rate of tem- 

perature increase of the gas. Based on equation (7) and the fact that  Q, is a maximum and equal to Q. 

at the maximum temperature difference, a normalized rate of gas temperature increase can be defined 

and expressed as 

-1 1 .dT,  . ~(T, ,a)( lrc1,  (14) 
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The mass loading is assumed to be much smaller than the particle solid density in the development of 

the above equation. For a carbon/ai r  mixture initially at STP, numerical values of the normalized rate 

of temperature  increase are plotted in Fig. 6. In the small particle limit, the normalized heating rate is 

independent  of particle radius due to the Rayleigh absorption effect. The gas heating rate generally 

decreases as the particle radius increases. For a mass loading of G = 1 g /m 3 and an incident solar flux 

of 100 k W / m  2, results in Fig. 6 can be converted to maximum heating rates for different particle sizes. 

Numerical values are shown on the vertical axis on the right of the same figure. For particle sizes in the 

range of 1 to 10 ~m, the maximum heating rate is on the order of 10 to 50" K/sec.  However, since the 

heating rate decreases rapidly with increasing particle size (to 0 .5"K/sec  at 100 /Jm, for example) the 

choice of particle size is critical to the effectiveness of a gas-particle suspension as a heat transfer fluid. 
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Normalized HeaZing Rate vs. Particle Size 

In this paper we have developed a simple two zone model for heat transfer from a particle to a sur- 

rounding gas at  arbitrary Kn.  Convection was neglected, and a Maxwellian distribution for the gas was 

used, but  the t rea tment  is applicable to many cases of interest. The expression for the heat transfer rate 

depends on Kn and was  shown to reach the appropriate limits as K n  goes to zero or infinity. The pri- 

mary value of the equation, however, lies in its ability to predict the energy exchange at values of Kn ~--- 

I where a useful expression with an analytic basis was not previously in use. As an example of an appli- 

cation of this formula we have made estimates of the maximum temperature difference between a parti- 

cle and gas in a suspension subject  to radiant heating. These indicate that  for particles under 10 ~m the 

temperature difference is less than 1 "K for incident fluxes up to 100 k W / m  2. Calculations also show 

that  the maximum heating rate for a gas- particle suspension is strongly dependent  on particle size and 

mass loading. 
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Nomenclature 

a particle radius (m) 

A constant in eq. (5) (m-"K) 

C specific heat of solid particle (J/g-" K) 

C~ specific heat of gas at constant pressure (J/g-* K) 

C' t specific heat of gas at constant volume (J/g- "K) 

d particle diameter (m) 

e xb black body emi~ive power (W/m2-um) 

G initial mass loading of particles in suspension ($/m 3) 

h convection heat transfer coefficient ( W / '  K) 

k thermal conductivity of gas (W/m- "K) 

kB Boltzmsnn constant (J/" K) 

Kn Knudsen number 

m. mass of the gas molecule (g) 
M w mass of gas in unit cell (g) 

n w number density of gas molecules (1/m 3) 
Nu Nusselt number 

q rate of heat transfer per area from particle to gas (W/m 2) 

Q, rate of radiant energy transfer to particle from source (W) 

Q~ rate of energy transfer from particle to gas (W) 

Qe rate of radiant energy transfer from particle to environment 

Q~ irradiance (W/m 2) 

r radial coordinate (m) 

T B zone boundary temperature ( ' K )  

Tg gas temperature (" K) 

Ts" radiant source temperature (" K) 

T e temperature of particle (" K) 

T ao temperature far from particle ("K) 

a accommodation coefficient 

F number flux density (I/m2-sec) 

e molecule internal energy (in Heat Transfer Model) (J) 

e effective total absorptivity of particle (in Application) 

~. equivalent emissivity of radiant source 

(w) 
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k mean free path of gas molecules 

gas-dependent constant in eq. 6 

pg gas density (kg/m 3) 

p~ particle density (kg/m 3) 

Stefan-Boltzmann constant 

absorption efficiency 

concentration factor 

(m) 
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