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Abstract—Radiative heat transfer in an anisotropically-scattering medium is considered. Limiting expressions

for the scattering contribution to the geometric-mean transmittance are developed. Using the kernel

substitution technique, these expressions are evaluated analytically to provide closed form expressions for

three selected two-dimensional geometries, These expressions allow conclusions to be drawn about the effect
of anisotropic scattering in multi-dimensional systems.

1. INTRODUCTION

SCATTERING has been shown to play an important role
in radiative heat transfer in many engineering systems
[1]. Animportant parameter in practical calculationsis
the geometric-mean transmiftance. The scattering
contribution to this parameter has been calculated in a
limiting fashion for a multi-dimensional medium which
scatters isotropically [2]. However, most materials
scatter anisotropically rather than isotropically. The
anisotropic problem has been treated in several papers
for systems with simple geometry [3, 4]. In addition,
first-order approximations to the upper and lower
limits of the scattering contribution to the geometric-
mean transmittance have recently been generated for
systems with more complex geometry [5].

The objective of this paper is to investigate how large
the anisotropic effect can be in systems with multi-
dimensional geometry. This paper will illustrate the
effect of anisotropic, \scattering on radiative heat
transfer by extending previous calculations [5] to
higher orders.

Following a simple physical reasoning process [2],
the present approach generalizes the previous first-
order mathematical expressions [ 3] to give successively
improved estimates of the scattering contribution to
the geometric-mean transmittance in terms of upper
and lower limits. The rate of convergence of each of
theselimits can beslow for selected cases. The two limits
together, however, give a relatively narrow bound on
the scattering contribution.

2. MATHEMATICAL DEVELOPMENT

2.1. General formulation
The equation for the transfer of energy by radiation
between two arbitraryinfinitesimal areas dA;and d A is

dQ0-a4 = o.0 dAo AFgp_g4(Tao-aa+Ti0—aa) (1)

where g, is the radiative heat flux leaving dA,;

dFq..4415 the shape factor between d4g and dA; tg9_44
is the geometric-mean transmittance between d4, and
dA calculated only along the line of sight between d A4,
and d4 ;and 5,_,  is the scattering contribution to the
geometric-mean transmittance due {o scattering from
elements away from the line of sight.

Expressions for tys_4. are well known [6, 7]. An
exact expression for T35y 4 is quite complicated. In the
previous work [5], first~order approximations for the
upper and lower limits of 3,_s, Were generated for an
anisotropically scattering medium by considering only
radiation that leaves d4, and is scattered by a single
volume element. Using the phase function

Plcosv) =1+x,c08v, —1gx,<1 @

where vis the angle between the incoming and scattered
radiation and x; is a2 forward-backward scattering
parameter and utilizing a coordinate system as shown
in Fig, 1, the first-order approximations for the upper
and lower limits of £§4_q, were shown to be

L O z, e"En
dF o galtioaals = p -3 dx,dy, dz; (3)
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F1G. 1. Coordinate system and geometry for the calculation of
the first-order approximation of the geometric-mean
transmittangce.
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a absorption coefficient

A area

A, coefficient defined by equation (24)

B, coefficient defined by equation (24)
s functions for recursive relations

Di functions for recursive relations

E extinction coefficient

E, coefficient given by equation (38)

E(X) function defined by equation {37)

F, coefficient given by equation (38)

dF shape factor between differential areas

F shape factor

G function defined by equations (10) and
(11)

M;;_, length defined by equation (19)
M,, length defined by equation (20)
%s  function for recursive relations
s function for recursive relations

P phase function

0 energy transfer

do outgoing radiosity

I;;—y vector defined by equation (12)

| . vector defined by equation (13)
R, expression given by equation {(4a)
R, expression given by equation (4b)

S.(X) exponential integral function

NOMENCLATURE

Xo scattering parameter for phase
function
x coordinate
¥ coordinate
z coordinate.
Greek symbols
] angle defined by equations (14) and
(15)
T geometric transmittance factor
- scattering coefficient
v angle associated with phase function
B function defined by equations (21) and
22)
w scattering albedo.
Subscripts
0 parameter associated with dA4
d0-dA4 between areas ddy and dA4
i ith scattering element
1 lower limit
u upper limit.
Superseripts
n order of approximation
s scattering contribution.

o
dFs0_aa [Tio-d.q]ll = s dA(R; +x4R;) O]

where

N —E(r1+rya)
Ry = J J j Znrig)e dx,dy,dz,  (4a)

(riry)?

Rim= zy(nery )y o ry ) @7 B Ta)
2 (ryri0)?

x dx; dy,dz; (4b)

with
E=a+o (5)
r, = xd+yj+zk {6)

and
ra =0 =0T+ —y)i+ -2k (7

In these expressions, dA, is assumed to be a diffuse
surface; a and ¢ are the absorption and scattering
coefficients of the medium ; 1, }, and k are unit vectors in
the x, y and z directions; n is the unit normal to the
surface dA; and r, and r, , are the magnitudes of the
vectors Ty and ry ,.

Toimprovethe accuracy of the estimates of the upper
and lower limits these results may be generalized to
include scattering from multiple volume elements.

Using the same physical reasoning utilized previously
for isotropic scattering [2], it can be shown that the
expressions for the nth approximation can be writtenin
terms of the expressions for the{n — 1)th approximation
as

GF 30_a4[Th0-a4J% = AFag_aulti0-041] "+ G5 (8)

dFdO—dA I:":sﬂO—dA];l = dFdO-dA [TSA‘IO—dA]’ll_ ! + Gi’ (9)

where
) - f5
7} \4dn ry

x (ﬁ (L0 608 Biint) g,

2
i=1 Fii-1

x dx; dy; dz,) dx, dy, dz, (10

AT z,(n*r, Je~ Erttrna)
\dn) x irua®

n 1 _
'x (1+xoc039M)(H H—XDM
i=a Fii-1
X e—EI’i.(-l dxi d.};l dzi) dxl d.V1 d21 (1 1)
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and

Yj—1 = Ga—x- N+ = Y- Df+E~2- 0k (12)

Tua = (6, — X+ V= Wi+ (2, —2)K (13)

008 By = Fim1,i—-2"Tii-1 (14)
Fimyi-2Tii-1

cos 8, = A Tma-1 (15)

Fra rn.:;— 1 .

In these expressions (x;, y;, z;) is the coordinate of the ith
- scattering volume.

It is to be expected from physical considerations that
in the limit as r approaches infinity the upper limit will
decrease and the lower limit will increase monotoni-
cally toward the exact value. The rate of convergence,
however, can be quite slow, particularly for systems
with a small scattering albedo. It is therefore much
more efficient to consider both limits smultaneously,
placingabound onthe exact valueatan arbltrary value
of n.

22. Two-dimensional systems
If the areas d4 and d A, are considered to be infinite
strips, the problem becomes two-dimensional. Ifd A has

width dS and a unit normal vector given by
n=li+nk (16}

then equations (8) and (9) still hold and equations (10}
and (11) can be integrated over

—wm<y<ow i=1n
to yield
g 2,5:(EM ) ( S(EM-1)
G =1— e :
( " 1)-[ J Mz 1=_[ Mi.i—l
% (14 XoBpim1) d%; dx;) dx,dz; (17
and

6y = (%) as j 'f 2, (% = )1+ (24— 2)1]

MiMzA (1 + xoﬁm)
" S(EM;;—4) ‘
X (r1=_[2 “‘*MT (1 +x08:-1)
x dx; dz;) dx, dz, (18)
where
= [~y 2+ {zi— 2111 {19)
M= IZ(x,.—x)z+(2..'—2)2]”2 (20)
M;'M
Burs = 3ag,., SEMIS(EM:-) - (2D

JHMT 28:8-G

1509

and

Mn - MnA

.BnA = M"M"A

S{EM)S((EM,,).  (22)

In these expressions S,{x) is the exponential integral
function given by

a_n _(xz+y2)l[1
Sy(x) = 29 (n+ 1)/2
]

which has been studied extensively [2, 8]. To carry out
many of the required integrations, it is convenient to
introduce the following kernel substitution :

S.(x)=A, e,

dy (23

(24)

The constants A, and B, have been determined in
previous considerations [2, 8].

Equations (8), (9), (17) and (18), together with
equations (3) and (4), are a complete set which can be
used to calculate the upper and lower limits of t5,_, , to
any desired degree of accuracy.

3. APPLICATION

As in previous work [2, 5], the equations will be
applied to three selected geometries. The approach will
be used to generate recursive relations which give
results at an arbitrary nin terms of the results for (n— 1).
The geometries considered are the same as those in the
above references.

3.1. Casel

Consider A to be an infinite horizontal plate facing
downward toward dA, at an optical thickness Ez, as
shownin Fig. 2(a), For this case the limits of integration
are

-0 < X < 00 i=1ln

—0 <X < W

—0 <z <z i=2n
0<z <z

It can be shown that G and Gy become

G = 4(%) M3 (25)
and '
@ n
G = (;) % @9)
where o is the scattering albedo and
Mﬂ.s = Iﬁ,s‘l‘xoﬂﬁ,s (27)
Nis= CistxoDis (28)
Cis = IIE o+ xoIVE (29)
D} = Vis+XoVIis (30)

Recursive rciﬁtions for the functions I-VI, are listed in
the appendix, along with the appropriate expressions

- for starting the iterative process. These expressions,
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F16. 2. Geometries of the three specific cases for d4, and A considered in the present work.

along with equations(8)and (9), can be used to calculate
the scattering contribution to the geometric-mean
transmittance for this particular geometry.

3.2. Case 2

In this case, A is an infinite plate facing upward at a
distance —z below dA, as shown in Fig. 2(b). The
limits of integration are

—w<x<oo i=Ln

—0 <X <w

—z < <0 i=2n’
0<zy<co.

For this case, the functions G% and G} are

G = 4(%)"114" (31)
1= (2w, 2
where
M = I+ x,IT" (33)
Nis= GatxoDg (34)
Cpo = I + xoIVE, (35)
r= VI 4% VI, (36)

Recursive relations and starting expressions for this
case are given in the appendix. '

33. Case 3
Inthis case, A is an infinite plate placed vertically at a

distance x from dA, as shown in Fig..2(c). The new .

limits of integration are

—00 < X; <X i=Ln

—o<z< 0

—0 <z < w0 i=2,n-A
0<z <o

After integration it is found that equations (25)—(30)
hold for this case, with x replacing z, The recursive
relations are the same as for case 1, and therefore it is
only necessary to determine the starting relations, Two
additional kernelsubstitutions areneeded for E,(x) and
E,(x), which are the familiar exponential functions [7].
These expressions are

Ey(x) = 22" (37
Eqf(x) = 72 (38)

Utilizing equations (37) and (38), limiting values of the
geometric mean transmittance are evalnated using
expressions derived in the appendix,

4. RESULTS AND DISCUSSION

The rate of convergence for this method is illustrated
in Figs. 3 and 4for Case 1 with optical thicknessequal to
1. It is similar for other cases and optical thicknesses.
The scattering albedo @ plays a large part in
determining the rate of convergence, with cases with
small albedo converging quickly. This is because G?
and G} are both proportional to " In some instances
oscillatory behavior was noticed for large values of n.
This is attributed to error introduced by the kernel
substitution.

Numerical results for, the three cases are presented in
Tables 1, 2 and 3. In some cases the value given is the

~ best estimate, with the computation being truncated at

the 1 beyond which numerical oscillation began. For
purposes of comparison, values of the geometric-mean
transmittance calculated without the scaitering

. contribution are included in the tables.

To illustrate the relative importance of the various

~ scattering parameters (@ and x,) and the optical

thickness (Ez or Ex) on the heat transfer, the average of
the best estimate of the upper and lower limits of
Fy0_4Tap—4 for the three cases are plotted in Figs. 5-7.
Some important conclusions concerning the general
effect of anisotropicscattering can be readily generated.
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F1G. 3. The convergence behavior for Case 1 with Ez = 1.0, i;'IG. 4. Convergence behavior for Case 1 with Ez = 1.0,
xg=10. Xg = —1.0.

Table 1. The lower and upper limits of Fo_,15,_, calculated for Case 1

Ez o

xg=1

Lower

-Lower

Fao_aTao-a

0.1 08479 1072
0.5 0.5062 % 10™2
0.9 0.1285

0.1 0.1950% 107!
0.5 0.1304
0.9 0.4033

0.1 0.1477x 107!
1 0501125
09 04518

0.1 04155%x 1072
2 05 04071x 107!
0.9 0.2890

01

0.5

0.8479x 10~
0.5062 x 10~!
0.1302

0.1950 % 10~
0.1304
04122

0.1472x 107!
0.1126
0.4656

04156 x 1072
04075x 1071
0.3239

0.1055x 1071
0.5882x 1071
0.1350

0.2545x 1071
0.1595
0.4336

0.2059x 1071
0.1481
04912

0.6931 x 102
0.6407 x 101
0.3351

0.1056 x 10~¢
0.5885 % 10-*
0.1402

0.2547 x 101
0.1596
0.4687

02059 x 101
0.1426 -
0.5737

0.6931 x 10-2
0.6411x 10
0.4924

0.6642 x 102
04317 % 10!
0.1234

0.1371x 107!
0.1049
0.3776

0.9082 % 10~2
08272 % 10!
0.3808

0.1555% 1072
0.2302x107*
0.1974

0.6648 x 1072
04320% 1071
0.1315

01371 x 107!
0.1050
04186

0.9087 x 10-2
0.8277x 101
0.4806

0.1555x 102
02307x 10"
0.3768

0.8326

0.4432

0.2194

0.0602

Table 2. The lower and upper limits of Fao_,18g_, for Case 2

xg=0

Ez w Lower

Upper

Xo=1

Lower

Upper

xo=—1

Lower

Upper Fag_aTan-a

0.1 0.2648 % 1071
0 0501779
0.9 0.5782

0.1 02192x10"!
0.5 0.1552
0.5 0.5490

0.1 0.1025% 107!
0.5 0.8803x 107!
0.9 0.4330

0.1 0.3928x 1072
L 05 04182x107!

0.1

0.5

02648 x 101
0.1781
0.5955

0.2193x 1071
0.1533
0.5682

0.1026 x 107!
0.8809 x 107!
0.4585

0.3929 % 102
04186x 1071

0.1815x 107!
0.1397
0.5401

0.1488 x 107¢
0.1265
0.5185

0.6637 x 10~2
0.8027 x 10~!
0.4644

0.2333x 102
0.4156x 10~

0.1815% 1071
0.1398:
0.6518

0.1489x 10~*
0.1266
0.6638

0.6644 x 102
0.8111 x 101
0.6315

02334 x 1072
04176 x 1071

03481 x 107!
0.2200
0.2207

02399 x 107!
0.1882
0.6411

0.1395x 1072
0.9934x 107!

" 0.4681

0.5611 x 1072
0.4385x 107!

0.3481x 107!
0.2201 0
0.8009

0.2900% 10!
0.1882 0
0.7491

0.1392x 1072
0.9937x 1071
0.5837

0.5612x 1072
04389 x 107! 0

0.9 0.305%9

0.1 0.5647 % 10~
2 0.5 087611072
0.9 0.1424

0.3407

0.5648 x 1073
0.8767x 1072
0.1911

0.2941

0.2400x 1073
09824 x 102
0.1014

0.2912

0.9282x 1073
0.8234x 1072
0.1571

0.4317

0.9283 x 103
0.8252x 1072 0
0.279%

0.5622

0.2401x 107?
0.9920x 1072
04535
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Table 3. The lower and upper limits of Fy,_,1%,_, calculated for Case 3

Xp=1

@ Lower Lower

Xg=—1

Upper Lower Upper

Fa0.-4Tdo-a

0.1147x 107!
0.9765x 107!
0.2758

0.1563x 10!
0.1047
0.3403

01746 x 1071
0.1249
0.4536

0.1072x 107!
0.8920 x 10~*
0.3978

0.2490 x 10™2
02893x 107!
0.2208

0.1479 x 1071
0.9766 x 101
0.3333

0.1749x 107!
0.1167
0.4059

0.1661x 1071
0.1217
0.5231

0.9454 x 10~2
0.7980x 1071
0.4858

0.1949 x 10~2
02206 x 10~*
0.3368

. 0.1 01478 x 101
0 05 09755x%x10"?
0.9 0.2963

6.1 0.1749x107*
0.5 0.1166
0.9 0.3600

0.1 0.1660x 10!
0.5 0.1216
0.9 0.4408

0.1 0.9447 % 102
1 05 07974x1071
0.9 03771

0.1 0.1948x 1072
2 05 02204x107!
0.9 0.1920

0.1

0.5

0.1148 5 107"
0.7973 x 107!
0.3231

0.1563 x 107!
0.1048
0.4000

0.1747x 107!
0.1250
0.5342

0.1073x 107!
0.8925x 10~*
0.5261

02491 x 1072
0.2903 x 107!
0.3952

0.1800x 10~
0.1128
0.3157

0.1928x 107!
0.1261
0.3875

0.1573x 1071
0.1176
0.4590

0.8202x 102
0.7094x 107*
0.4029

0.1437x 1072
0.1639 x 10~*
0.1470

0.1800x 107!
0.1128
0.3586

0.1928x 107+
0.1262
0.4286

01573 x 107*
0.1176
0.5299

0.8209 x 1072
0.7100x 1071
0.4741

0.1438 x 10~
0.1639x 101
0.3473

0.5000

0.3480

0.1409

0.5822x 107!

01203 x 107!

As demonstrated in previous studies for isotropic
scattering [2], the scattering contribution to the
geometric-mean transmittance is extremely important
for media with large scattering albedo. In all three cases
(except for the optically thin limit in case one for which
the geomietric-mean transmittance is one), scattering
contributes over 50% to the total geometric-mean
transmittance when w = 0.9, ,

In general, the effect of the anisotropic factor x, is
most significant in systems with large optical thickness
and small but finite scattering albedo. In media with
large scattering albedo, photons leaving the area dA,
are scattered many times before they are absorbed by
the area 4. Since each photon can experience multiple
scattering involving different scattering angles, the
detailed angular dependence of the scattering function

LI WYY

T Irrirm
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Fic. 5. Effects of w and x, on F,,_t3_, at different optical
thickness for Case 1.

is ‘averaged out’ and the effect of x, is thus less
significant.

For cases in which the effect of x, is significant,
however, the specific effect of anisotropic scattering
appears to be quite complex and depends strongly on
the geometry of the considered system. In case 1, for
example, Fyo_ tio_4 for a medium with x, =10
(strongly forward scattering) is always higher than
those with x, = 0 (isotropic scattering) and x, = —1
(strongiy backward scattering). In cases 2 and 3, on the
other hand, the heat transfer in a strongly forward
scattering medium can be higher (case 2, w = 0.9, Ez
= 1.0, 2.0 and Case 3, w = 0.1, 0.5, Ex = 1.0, 2.0) or
lower (case 2, w = 0.1;w = 0.5,0.9, Ez = 0.1 and Case
3, w=01, 0.5 Ex=0.5) than the corresponding
isotropic scattering and strongly-backward scattering

18] lIllIIJ

LELRRLLY |

T T T

10 1 1
0 04

20
Ez

F16. 6. Effects of w and x; on Fyq_ ,Tig_, at different optical
thickness for Case 2.
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F1G. 7. Effects of w and x, on Fye_,tia_, at different optical
thickness for Case 3.

cases. Incase 2 with @ = 0.9,itisinteresting to note that
both anisotropic cases (x, = 1.0 and x, = —1.0) yield
higher heat transfer than the corresponding isotropic
case when the optical thickness is large (Ez = 1.0, 2.0).

Physically, thedifference in the effect of x, on the heat
transfer for the three cases is due primarily to the
difference in geometry of the three scattering media. In
case 1, the area A is in the ‘forward’ direction relative to
dA, An increase in the forward scattering thus
naturally leads to an increase in heat transfer. In case 2,
a photon leaving d.A, must undergo both forward and
backward scatterings before it is absorbed by the area
A.The overall effect of anisotropic scattering on the net
heat transfer thus becomes a sensitive function of the
scattering albedo and optical thickness. This same
argument also explains the complicated effect of x,
observed for case 3.

In recent years, many investigators [4, 9, 107 have
attempted to develop ‘scaling’ relations so that heat
transfer in anisotropic scattering media can be
expressed in terms of ‘equivalent’ isotropic scattering
results. Most of the mathematics developed for such
‘scaling’ relations, however, were based on analyses ofa
one-dimensional parallel slab, The present work shows
that the applicability of such ‘scaling’ relations to
scattering media with non-parallel-slab geometries can
be highly uncertain. Indeed, the sensitive dependence
on geometry asillustrated in this work suggests that the
development of ‘scaling’ relations for general multi-
dimensional anisotropic scattering media might be an
extremely difficult task.
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supported by the National Science Foundation Grant
Number MEA 80-24324.

REFERENCES

1. J. DeRis, Fire radiation, a review. The 17th Symposium
(International) on  Combustion, pp. 1003-1006.
Combustion Institute (1979).

1513

2. W. W. Yuen, A limiting approach for the evaluation of
geometric-mean transmittance in a multi-dimensional
absorbing and isotropically scattering medium, Trans.
Am. Soc. mech. Engrs, J. Heat Transfer 106, 441-447
(1984).

3, L. S. Dolin, Propagation of a narrow beam of light in a
medium with strongly anisotropic scattering, Sov.
Radiophys. 9, 4047 (1966).

4, H.Lee and R. Q. Buckius, Scaling anisotropic scattering
in radiation heat transfer for a planar medium, Trans. Am.
Soc. mech. Engrs, J. Heat Transfer 104, 6875 (1982).

5. W. W. Yuen, Evaluation of geometric-mean transmit-
tance in a multi-dimensional absorbing and anisotropi-
cally scattering medium, ASME Paper 83-HT-45.

6. H.C.Hottel and A, F. Sarofim, Radiative Transfer, Chap.

7. McGraw-Hill, New York (1967).

7. R. Siegel and J. R. Howell, Therma! Radiation Heat
Transfer, Chap. 17. McGraw-Hill, New York (1972).

8 W.W.Yuenand L. W. Wong, Numerical computation of
an important integral function in two-dimensional
radiative transfer, J. quant. Spectrose. Rad. Transfer 29,
145-149 (1983).

9. B. H. T. McKellar and M. A. Box, The scaling group of
radiative transfer equation. J, atmos. Sci. 38, 1063 (1981).

10. E. Indnii, Scaling and time reversal for the linear
monoenergetic Brefzmann equation. In Topics in
Mathematical Physics (edited by H. Odabasi and O.
Akyuz), p. 113. Colorado Associated University Press
1977,

APPENDIX

Recursive relations for Case 1

D (1)l Bz :
ooy CUSUET T ]y
k'f [rgo(s_r)[(_gkﬂak)rﬂ k+1,0

(=1t [ (=1F-1 -
4 3t
+rdy kﬂrgo (5—n! [{—BeBisV ™! o
s (=1ysi{EzT ] -
H".s= n~1
- [rgo(s—r]!(_ﬂk+13k+2) krn

(Al)
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Starting equations for Case 2
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Recursive relations for Case 3
The recursive relations for Case 3 are given by equations
(A1)-(A10), inclusive.

Starting equations for Case 3

Chs=mA Ay A E o7 WP

x I: (—1y _ {—1ys! ]
(ByBy.1+F B:f ™t (BiBy—y—B.F yT
hd (—1¥s!(Ex)~"

+e—BzF1£x R
r=o (5=1N1(BBr—y —=B,Fy*!

(A29)

If ByB,_, = B,F,
Ciy = TA Ay AL E) &7 BuBue1Ex
(—1)s! (Ex)t!
) [(BkBk-1+F1Bz)’H * s+1 (A30)

1. -8
Di, = mA (AL ARE, g™ Ber 1 BuEx

I: (= 1)s) {—1)s! ]
X PR +1
(ByBy+ 1+ BF3) BBy 1 — By F)

] (_l)rs!(Ex)r-r

.[.e—F:B;Ex .
;go {S—l‘)! (BkBk+1“BgF2)"+1 (AS].)
If B+ 1B, = ByF,
‘DF},: = nAk*lAkAaEz e"-BknBaEx
—(—1)'s! s+1
x (=1)s (Ex) @)
(Brs1Be+FaBay™t  5+1
AE

Moo= ef o mmEn A33
%0 =F.B, " ) (A33)

CALCUL DE LA TRANSMITTANCE MOYENNE GEOMETRIQUE DANS UN MILIEU
ABSORBANT MULTIDIMENSIONNEL ET DIFFUSANT ANISOTROPIQUEMENT

Résumé—On considére le rayonnement thermique dans un milieu diffusant anisotropiquement. Des
expressions limitantes sont développées pour la contribution de la diffusion 2 la transmittance moyenne
géométrique. En utilisant la techniquede substitution de noyau, ces expressions sont évaluées analytiquement
pour fournir des expressions analytiques pour des géométries bidimensionnelles particuliéres. Ces expressions
fournissent des conclusions utiles sur 'effet de la diffusion anisotrope dans des systémes multidimensionnels.

DIE BERECHNUNG DES GEOMETRISCHEN MITTELWERTS DER DURCHLASSIGKEIT IN
EINEM MULTIDIMENSIONALEN ABSORBIERENDEN UND ANISOTROF STREUENDEN
MEDIUM

Zusammenfassung—Es wird die Wirmeiibertragung durch Strahlung in einem anisotrop streuenden

Medium untersucht. Es werden einschriinkende Ausdriicke fiir den Beitrag der Streuung zum geometrischen

Mittelwert der Durchlissigkeit entwickelt. Mit Hilfe des Kernel-Substitutionsverfahrens werden dicse

Ausdriicke analytisch ausgewertet, um Bezichungen in geschlossener Form fiir drei ausgewdhlte

zweidimensionale Geometrien: zu erhalten. Diese Beziehungen ermdglichen SchlufBlfolgerungen iiber den
EinfluB anisotroper Strevung in multidimensionalen Systernen.

PACYET B TEOMETPO-OIITHYECKOM IIPUBITHXEHHUH KOSPGHLMEHTA
[IPOITYCKAHMSA B MHOTOMEPHOIT TIOTJIOWAIOIIEN W
AHMOTPOITHO-PACCEHMBAIOLIEN CPENTE

Annorauusi—PaccMaTpuBaeTcs paaHaUHOHHKIA TeNNnonepeHos B aHK30TPONHO-PACcCEHDaIOINEH Cpene B
reoMeTpo-onTHYeckoM npubnanxennn. [ToyryyeHs! MpefeAbHble BHPAXEHNA AR CUESHKY BKAaja pacced-
HuA B KooQdHIHenT Nponyckanua. TIoACTAHOBKOH AApa 3TH BEIpaXEHHA Npeolbpa3yloTca aHANHTHYECKH
K 3aMKHyTOH GopMe JAnA Tpex BLIDPAHHBIX OBYMEPHMX reoMeTpuil. ITONyuEHHBIC BRIPAXCHHSA TO3-
BOSIALOT CAENATE BRIBOABI 06 3(hheKTe AHNIOTPOMHOrD PACCENHHA B MHOTOMEPHEIX CHCTEMAX,




