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The radiation intensity in ¢ gray participating medium s expressed in a differenticl
form. The energy equation for radiative transfer becomes an infinite-order differential
equation. Utilizing the method of weighted residuals and introducing some appropriate
formulations for the intensity boundary conditions, @ method of successive approxima-
tions is developed. The solution method is applied to ¢ one-dimensional problem with lin-
ear-anisotropic scattering. This problem is chosen because of its practical importance and
the availability of exact solutions. A first-order closed-form result, which has never been
derived analytically before, is obtained and shown to have good accuracy. Successive
higher-order approximate solutions are also presented. These solutions are easily attain-
able algebratcally and converge quickly to the exact result. To illustrate the possible ap-
plicability of the solution method for multidimensional problems, the first-order solution
to a simple two-dimensional problem is presented. Results show that based on the present
approach, reasonably accurate approximate solutions can be generated with some simple

mathematical developmenis.

Introduction

The major difficulty in the analysis of radiative heat transfer in
a participating medium lies in the mathematical complexity of the
integral transport equation. Except for some simple one-dimensional
problems [1, 2], exact sclution is extremely difficult to obtain. A great
deal of research effort in the past, therefore, had been directed to the
development of an effective approximation technique for this complex
problem. Milne [3], Eddington {4], Deissler [5], Traugott [6], Cheng
[7] and many others have proposed different approximation methods
for the radiative transfer problem. Their success, however, is quite
limited. While most of them are effective in an accurate heat-flux
prediction for the one-dimensional planar problem, they are subject
to some common difficulties. First, most of the proposed. approxi-
mation methods cannot be readily generalized to obtain solutions with
better accuracy. High-order approximations based on these methods
are either not available or almost impossible to obtain because of the
extreme mathematical complexity. Secondly, all of the proposed
methods are very difficult, if not impossible, to adopt for problems
with multidimensional geometry. A few attempts have been reported
[7-10], but they are all either too complicated mathematically or too
restrictive in application because of some highly simplifying physical
assumptions.

The purpose of this investigation is to reformulate the radiative
transfer problem as a boundary-value problem. The governing integral
equation is transformed into an infinite-order differential equation.
The intensity boundary condition is expressed as an infinite set of
linear relations in terms of the medium’s temperature and its deriv-
atives at the physical boundary. Utilizing the method of weighted
residuals, which, in its various forms, has been used extensively to
obtain approximate solutions for many problems in fluid mechanics
and heat transfer [11], successive approximate selutions can be readily

_generated. In contrast to the existing approximation methods, the
present solution method has the distinct advantage that solutions with
increasing degree of aceuracy can be obtained with lttle difficulty.
The general philosophy of the solution technique also appears to be
adaptable to problems with multi-dimensional geometry.

To illustrate the effectiveness of the proposed solution method, the
problem of radiative heat transfer in a one-dimensional, gray, ab-
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sorbing, emitting and linear-anisotropic scattering medium will be
considered. This problem is chosen mainly hecause of its practical
importance in many engineering problems such as energy transport
in porous media and in fire and smoke. Solution to this problem will
also demonstrate the superiority of the present method, since none
of the existing approximation methods have ever been applied suc-
cessfully to problems with anisotropic scattering. Based on the method
of weighted residuals, successive approximate solutions, converging
quickly to the exact result, will be developed. Also obtained is a
closed-form solution, which is convenient for practical engineering
caleulations. To demonstrate the potential effectiveness of the present
methed for multidimensional problems, the first-order approxima-
tion of a simple two-dimensional radiative heat transfer problem with
planar geometry is developed. The result is shown to compare fa-
vorably with the available exact solution

The One-Dimensional Problem

Physical Model. The physical model chosen for the present
analysis is a uniform plane parallel gray medium with two black walls,
The medium is assumed to consist of particles which scatter radiative
energy anisotropically. For simplicity, the anisotropic scattering
property of the medium is approximated by retaining only the first
two terms of the Legendre polynomial series expansion for the general
phase function (for details, consult [12]). Such seattering is termed
linearly anisotropic and has the following mathematical representa-
tion

pleosflg) =1+ xpcosfy —1=<x0=1 (4)]

where p is the phase function, 8 the angle between the incoming and
the scattered ray and xq a coefficient which indicates physically the
amount of anisotropic scattering in the medium.

Governing Equations. With the coordinate system as illustrated
in Fig. 1, the equation of transfer can be written as

& o Bitaiy+ L f i()p(w, )do’ )
ds 4 Jor=4x
where [ denotes the radiation intensity, i, the blackbody intensity,
a the absorption coefficient, v the scattering coefficient, 8 the ex-
tinction coefficient, s the pathlength and «w the solid angle.
Substituting equatton (1) inte equation (2) and utilizing the axi-
symmetrie property of the planar geometry, the last term of equation
(2) can be integrated over ¢’ from 0 to 27 giving
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di 1 1
M 1+i=(1—¢.;o)f¢,+99f id,;+"’°x°pf indp  (3)
dr, 2 J-1 2 -1

where wp represents the single scattering albedo, 7, the optical
thickness defined by

dr, = fdz (4)

with z being the axis of symmetry and u = cos 8.
Assuming that there is no heat generation, the energy equation for
the present one-dimensional systern is given simply by

d 1
fpdp = 0.
dr; .ﬁl atia ®)

Utilizing equation (5), equation (3) can be integrated over u from —1
to 1 to yield the following familiar relation

ib=1£1 idy )

2J-1
Substituting equation {6} into equation (3) gives
di B
u =f,,—f+°’°"°pf ipdp )
dr. 2 -1

Equation (7) can now be rearranged and differentiated successively
to obtain the following set of equations

.. di | wexg J‘l .
=iy — gt d
=iy mpo it _ tude
di di d
e (8)
dr, dr, dr:
ny dan; dn-O-l'
dri _dt 4N 108,
dr;®  dr," dr, "+l

Note that equation (5) has been used to eliminate all but one of the
scattering terms appearing in equations (8).

Combining equations (8) and after some algebraic manipulation,
the radiation intensity can be written in the following differential
form

= dfiy  worep 2 1\ d2-1,
i= % (-Dhpt—or ( ) 9
kz=:0 # dr,*® | Woro E1\2k + 1) d7, 21 ®)
3

Substituting equation (9) into equation (5), the governing equation
for the one-dimensional problem based on the present differential
formulation becomes

1

Yoo Ip,z=:1 2k + 1

1 ) d 2y, _

dr,2 (10)

Equation (10) has the advantage of being a differential equation in-
stead of an integral equation under the traditional formulation. It is,
however, of infinite order. In principle, its solution requires an infinite

—N O1ENClatUYE

dz

Fery
ThTA-T8

Flg. 1 Coordinate system for radiative transfer in a plane parallel geom-
“elry

number of boundary conditions.

Boundary Conditions. For the present one-dimensional problem
and in fact most problems in radiative heat transfer of practical in-
terest, temperatures of the bounding surfaces are gpecified. In terms
of the radiative intensity, boundary conditions for the present prob-

lem are
L 4
f(—-'—,_u.)=aT1 02ps1 (11)
2 T
L Tyt )
i(—,#)=a L _1<p=<o (12)
2 T

where o is the Stefan-Boltzman constant, T'; the lower wall temper-
ature, T the upper wall temperature and L = 3d with d representing
the distance between the bounding walls. Utilizing equation {9),
equations (11) and (12), evaluated at the different values for g, can
be considered as an infinite set of linear relations in terms of the
blackbody intensity and its derivatives at the two boundaries. These
relations, together with equation (10), thus constitute a complete
mathematical deseription of the present one-dimensional problem.

Approximate Solution. Exact solution to equation (10) and its
associated boundary condition is clearly impossible to obtain. Buta
series of successive approximate solutions, converging to the exact
result, can be constructed by the following procedure.

In the N'th approximation, the blackbody intensity in the medium
is assumed to be a finite-order power series of the following form:

4N-1
W= 3 A7t (13}
k=0

Physically, i, is expected to be a monotonically increasing smooth
function. It also approaches a linear distribution in the limit of L —
e, Equation (11) should thus be a fairly accurate representation of
the blackbody intensity even for moderate values of N.

Equation (13} is ocbviously not a solution to the governing conser-
vation equation. In fact, when i, ¥ is substituted into equation (10),
a residual e will be resulted as follows:

Ln(is™) = e

where Ly is an operator defined by

(14)

Aj = coefficients defined in equation (13)

a = absorption coefficient ‘

By, B, = poefficients defined in eqguation
(32)

d = distance between the two walls for the
parallel plate system

Fy, F1 = functions defined by equations (32)
and (33)

{ = radiation intensity

ip = blackbody intensity

s W™} = Nth approximation of the blackbody
intensity

j =v=1, equation (23)

L = Bd, optical thickness between the two
walls of the parallel plate system
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L. n = differential operator in the Nth order
approximation, equation (15)

£, £y, £, = directional cosines

£ = veetor with components (£, £y, £z}

P = phase function

g, g, ¢V = first approximation of the
heat flux

S = distance along a line of sight

T = temperature

T'1 = temperature of the lower wall

Ts = temperature of the upper wall

u, v, w = coefficients defined in equations
(34) and (35)

W; = weighting factors for the method of
weighted residuals, equation (16)

xg = coefficient defined in equation (1)

x, z = spatial coordinate

8 = extinction coefficient

¥ = scattering coefficient

ey = residuals in the Nth approximation,
equation (14)

fg = scattering angle measured from forward
direction to direction of observer, equation
(1)

#! = polar angle, Fig. 1

A = constant defined in equation (23)

it =cosf

o = Stefan-Boltzmann constant

Te» T2 = ax, az defined in equation (4)

T = vector with components (75, 7y, 72)

w, o' = solid angle

wp = single scattering albedo
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In= 5 [ ] a (15)
v= L (2k + 1) dr 2

To determine the best estimate for the constants Ax’s, the present
work utilizes the commonly used method of weighted residuals [11].
Multiply equation (14) by a weighting factor W, and integrate over
the one-dimensional space. The Nth order approximation requires
that ey be small in the following sense:

L/2

” WiLylyWdr, =0 (k=1,2,...,2N)} (18)

The exact form of the weighting factor generally depends on the na-
ture of the considered problem. For the present one-dimensional
analysis, since {5 V) is assumed to be a power series in 7, a natural
choice for the weighting factor is

We = Tzk—l (17
In the Nth approximation, equation (10) is thus approximated by the
following 2N algebraic relations

Lfe
g Ly ™ = 0
—-L/2

(k=1,2,. ,2N) (18)

Physically, it is interesting to note that equation {18) can be in-
terpreted as the conservation of the first 2N multi-order moments
of the radiation intensity within the medium [13]. Mathematically,
equation (18) is identical to requiring that equation (10} is satisfied
at 2N distinet values of 7. In the limit of N— =, equations (18) and
(10) are clearly equivalent.

To generate the remaining set of equations needed for the deter-
mination of Ax’s, 2N relations must be generated from the boundary
conditions. The task of approximating equations (11) and (12) by a
finite set of relations is not entirely new. A great number of efforts
have been magde in this area, because all of the existing approximation
techniques require some forms of approximation for the intensity
boundary conditions. A survey of the existing works suggests that the
following two ideas appear to be the most applicable for the present
consideration:

1 Marshak's Boundary Conditions. Proposed by Marshak [14],
‘the boundary conditions for the present Nth order approximation
are

(19)

Physically, equations (19} can be interpreted as the conservation
of multi-order moments of the radiation intensity across the two
boundaries. It is compatible with the physical interpretation of
equations (18).

2 Variational Boundary Conditions, In his work with the
Spherial Harmonics techniques, Pomraning [15] showed that the
radiative transfer equation and its associated boundary conditions
can be characterized simply by a Lagrangian, Applying the variational
principle, the intensity boundary condition can be written in the
following form.

1 « £ 0"T14 ,( I_; )
J;dpp[z( 2,#) — & 2" #

LT LG Y (L _]..
+J:ld,up. - t(z,,u}]ﬁa[2, ut=0 (20

where 8i(—L/2, —u) and 8i(L/2, —u) stand for the variation of the trial
intensity function at the lower and the upper walls, respectively. In
the Nth approximation, if the variation of the blackbody intensity
ip and its first (N — 1) derivatives at the two boundaries are assumed
to be independent, it can be readily shown that equation {20) is re-
duced to a set of 2N equations.

Equations (18), together with either equations (19) or {20) thus
constitute a complete set of equations based on which the coefficient
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Ay’s can be evaluated.

Results and Discussion. For the present one-dimensional
problem, caleulation shows that both Marshak’s boundary conditions
and the variational béundary conditions are effective in generating
accurate low-order approximate solutions, The first-order approxi-
mation using Marshak's boundary conditions, for example, yields the
following radiative heat flux expression

O‘T]_4 - O‘T24
14 (§ - w—°x°) L
4 4

In the limit of we — 0, equation (21) reduces to the familiar diffusion
approximation [5)]. It is interesting to note that the same expression
was developed semi-empirically by Dayan and Tien [16] by maiching
exact solutions in the optically thick and thin limits. Equation (21)
compares very well with the available exact solution [16] for all values
of the optical thickness and the scattering albedo.

With the variational boundary condition, the first-order approxi-
mation gives a slightly different expression for the radiative heat flux
as follows:

qW) = (21)

oTi4 — aTy?
3 2P/ 4 (?. - “’_Dxﬂ) L
4 4 4

While equation (22) is less accurate than equation (21) in the optically
thin limit, it is superior in the optically thick limit. When wg = 0, for
example, equation (22) agrees quite closely with the optically thick
asymptotic heat flux expression obtained from an exact calculation
[1,2].

Results for the radiative heat flux based on the first three approx-
imations and Marshak’s boundary conditions, together with the exact
result, are presented in Table 1. Some typical results of the temper-
ature profile are shown in Fig. 2. It can be readily observed that the
successive approximate solutions converge quickly to the exact so-
lution, independent of the value of the optical thickness and the
scattering albedo. It is importent to emphasize that for each ap-
proximation, the solution is obtained by solving a simple finite-order
matrix equation for the constants Ay, a relatively easy task,

g = (22)

The Two-Dimensional Problem

Physical Model. To illustrate the effectiveness of the present
method for multidimensional radiative transfer, the present work
considers the same parallel-plate system as in the previous one-
dimensional problem. For simplicity, the scattering coefficient is now
assumed to be zero, and the two-dimensional effect is considered to
be generated by the following temperatures at the two boundaries

oTd=eg/rts, Typ=10 (23)

where j = v/—1 and X is a constant which can be interpreted as the
inverse wave-length of the sinusoidal temperature variation at the
lower wall. In spite of its simplicity, the present problem has impor-
tant practical applications, because by superposition its solution can
be generalized to parallel-plate radiative transfer problems with ar-
bitrary wall temperatures. This problem also serves as a good indi-
cation on the effectiveness of the present method because exact so-
lution {17, 18] is available to check the accuracy of the approximate
solution.

Governing Equations. Following a similar procedure as in the
one-dimensional problem, the radiation intensity for the present
two-dimensional system can be written in the following differential
form:

)

ilz, &) = L (—1)*(£- grad)*iy (24)
E=0
where
f-grad=l[f,-2-+ é’z—?-
- a ox oz

with £y, £; being the directional cosines in the x and z direction, re-
spectively. The energy conservation equation becomes
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Table 1 ComParison of the first, second and third a
o T3) with the exact solution for the one-

pproximations of the dimensionless heat flux 9./ (e T} —
dimensional problem with anisotrepic scattering

woXp = -0.7 WXy = 0.0 ' worg = 0.7

L First, Second and Third Exact First, Second and Third “Exact First, Second and Third Exact

0.1 0.915 0.930 0.946
0.907 0.901 0.921 0.916 0.937 0.931

0.901 0.916 0.931

0.5 0.684 0.727 0.777
0.668 0.661 0.709 0.704 0.756 0.750

0.662 0.702 0.748

1.0 0.520 0.571 0.635
0.507 0.505 0.556 0.553 0.616 0.611

0.504 0.553 0.612

3.0 0.265 0.308. 0.367
0.261 0.260 0.302 0.302 0.359 0.358

0.260 0.302 0.358

10.0 0.098 0.118 0.148

0.097 0.117 0.147

0.097 0.117 0.109 0.147

o] T T T 1
~———EXACT [16]
—=—=— APPROXIMATE

2/d

Flg.2 The comparison of the first, second and third appraximation for sorme
typical temperature profile with fhe exact resylt [16] for the one-dimensional
problem with anisolropic scattering

bl 1
div - Ep=0 25
kz=:1 (Zk T (div - grad) i, (25)
where div-grad is the two-dimensional Laplacion given by
1 {22 of
div-grad = = [-—+ — 25
iv - gral - (ax2 az2) (25a)

Based on equation (25) a series of approximate solutions can again
be constructed utilizing the method of weighted residual and imposing
the appropriate set of boundary conditions.

Approximate Solution and Discussion. To adopt the solution
method presented in the previous sections to the present two-di-
mensional problem, a number of important modifications are clearly
required. The simple power series expansion, for example, does not
appear to be an adequate trial solution for the two-dimensional
blackbody intensity because, in the limit of I, — @, i, should be a
function of sinh Ar, and cosh A7,. A different series expansion which
possesses the above limiting behavior should be chosen, Corre-
spondingly, a different set of weighting functions W}, should be in-
troduced. The two-dimensicnal generalization of the operator Ly,
as expressed by equation (9) for the one-dimensional case, must be

constructed with care. Since the new series expansion for iy might ’

Ppossess non-vanishing derivatives of all order, some sort of truncation
procedure must be introduced in the development of approximate
solutions. It can also be shown (as was done for the spherical harmonic
method in its application to the neutron transport theory [19]) that
without some additional assumptions, the Marshak boundary con-
dition cannot be applied to’ the multidimensional problem in a
mathematically consistent manner. The variational boundary con-
dition is more suitable. It must be emphasized that the applicability
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of the present solution method to multidimensional problems will
remain an open question until all of the above modifications are ad-
squately resolved, A detailed consideration, however, would be quite
lengthy and beyond the scope of the present work. Many of these
modifications are currently under investigation; and these results will
be presented in future publications, For the purpese of demonstrating
the potential applicability of the proposed solution method, the
present work will consider only a simple first-order approximate so-
lution, As will be demonstrated, the first-order result already gives
good agreement with the available exact solution.

Utilizing the symmetry of the present two-dimensional system, the
first-order approximation for the biackbody intensity is assumed to
be

™ = (Ag + Bge*s + Bye~Ars)pitry (26)

Similar to equation (8), the governing conservation equation is
approximated by '

vz
S Lasdr, =0 @7)
-1/2
where L is a two-dimensional operator defined as
122 a2
= 28
YT a2 [oge az'*’] 28)

Substitution of equation (26) into equation (27) immediately
yields

(29)
The remaining constants By and B; must now be determined from
the boundary conditions,

Generalizing the development of Pomraning [15], the variational

boundary eondition for the present two-dimensional problem can be
written as

j?""x
f dwt, [i ('r_-,, Loy, e,) € J 5 (T,,, L, —e,)
0 2 T 2

. L N .. L
+ fo dot; [—L (Tx,ge,rez)] 8 (T,Jg—zx,—e,)w (30)

Ag=0

where [odwand fodew represent integration over the upper and lower
hemisphere respectively. Substituting equations (23) and (26} into
equation (30}, keeping only terms up to the first derivative in 7, and
carrying out all the necessary integration, the foflowing equation is
obtained.

nleinl 4 4
16 2/ 8 2] 4 2

1 L L 1 L
+—€Fy (= 2] 6Fy [- 2| = |- Fy [- =
¥ °( 26"( 2) [s °( 2]

Erl Y- -
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1 L L 1 L 9 L L
-2 — el = _— - = — —| =
+ 4?\Fo(2) 5F0(2)+[8F0(2) 32F1 (2)] 8F; (2) 0 (31)

The functions Fo and F are introduced in equation (31) for conve-
nience; they are defined as

Folr;) = 4x(Boe**z + Bie~*7:) (32)
4
Filrs) = —;— M(Boe*™s — Bre—Hrs) (33)

Now, in the use of the variational method one usually assumes that
all variations at the boundaries of the system are independent. But
the definition of Fy and ¥} involve only two constants and, since there
are just two boundaries in the present problem, variations of Fy and
F at each boundary are clearly not totally independent. For sim-
plicity, the present work assumes that at the two boundaries Fg and
Fy are linearly related according to

nffn

L L
UF]_ ("E) +wF0(—E) =1

(34)

(35)

where 1, v and w are constant and, from a simply physical consider-
ation, can be shown to be positive. Using equations (34) and (35) in
equation (31} to eliminate all the F terms and setting the coefficient
of Fo(L/2)8Fo(L/2), 6Fo(~L/2) and Fo(—L/2)8Fs(—L/2) to be zero
yields the following algebraic equations for u, v and w.

1 A? 9
— | - 2=
(16 el 32 0 (36)
1 A 9 fiw\e
—+ -2 = 7
(16 64) 32 (u) @7
i 1 w{9 1
—=h ===y 3
v 4 v 32w 2) (38)
The solution of equations (36) to (38) is
P )\2)1/2
=-+= 39
¢ (9 18 (39)
2
9 (g N 2|12
419 18
T o
1,
2+4 (— + —-)
g 18
9 (2 }\2)1:‘2
2 ANz 419 18,
v (5 * ﬁ) 21/ (41
1/2
2+4 (E + A—)
9 18
Equations (34) and (35) can now be solved to yield
L1, _ﬁ) e-ML2)
4 3
By= ;2 - (42)
2
b [(u - —) g (u + —) e”‘]
3 3
— i w+ 5) aML/2)
47 3
BI = (43)

e

Physically, the interesting quantities are the temperature and the
radiative heat flux. In terms of the constants By and By, they are

iy @ = [BoeMs + Bre—Ma]eitrs (49
4 .

g =~ ?WjA[Bue M 4 Bre=Mre]girs (45)
4 .

g = _37:7\[308“’ — BigMz]elhe: (46)
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In a recent work, Breig and Crosbie [17, 18] obtained the exact so-
lution for the radiative heat flux and the gas temperature at the two
bounding walls for the present problem., Comparisons between
equation (46) and the exact result at the upper and lower walls are
shown in Figs. 3 and 4, respectively. The agreement is quite satis-
factory. Even though exact solutions for g, and g, at arbitrary values
of 7; and 7, are not available, it is reasonable to expect that they
should be of the same order of accuracy as at the two boundaries. The
temperature profile prediction, however, is less satisfactory. It can
be shown that equation (44), when evaluated at the lower wall, yields
an incorrect asymptotic value in the limit of A ~> =. The accuracy
improves at the region near the upper wall. A comparison between
equation (44) and the exact solution for the gas temperature at the
upper wall, for example, is shown in Fig. 5.

To further demonstrate the relative accuracy and efficiency of the
present solution method compared with the existing approximation
techniques, the two-dimensional problem with a constant temperature
at the upper wall and a step temperature at the lower wall is now
considered based on the above first-order result. This problem is
chosen largely because an exact solution generated by the Monte Carlo
technique [20] and a fairly accurate approximate solution generated

Lo,

(e1:]

08 -
L (—%)
T

04 —— EXACT RESULT [17]
———1s1 APPROXIMATION

02 "
[+ L i : 1 1 1

of o5 T T 5 . 50 100

Fig. 3 Comparison between the flrst approximation and the exact result of
the radiative heat flux at the lower boundary for the two-dimensional
problem

1.0 T T T T

EXACT RESULT [17]
— — 131 APPROX:MATIEN

Fig. 4 Compariscn between the first approximation and the exact result of
the radiative heat flux at the upper wall of the two-dimensional problem

0.5 T T T T T T
— - - EXACT RESULT [18]
= —— =1 51 APPROXIMATION

Flg.5 Comparison between the first approximation and the exact result of
the dimensionless gas temperature at the upper boundary for the two-di- .
mensional problem
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by a modified differential methed [21] are both available in the lit-
erature. They can thus serve conveniently as a basis for a direct
comparison.

Specifically, the boundary conditions for this sample two-dimen-
sional problem are agsumed to be the following normalized forms:

ST = { 1 x>0 (47a)
-1 x<0
aTd=0 (47b)

By a Fourier series expansion, it can be readily shown that equation
(47a) can be written as

oTi= lim L3 @n+ 1) sin Ay (48)
Ly—= T =0
with
©@n + )T
£, =TT 49
‘ L (49)

Utilizing equation {46) and a simple superposition, the first-order
approximations for the radiative heat flux at the upper and lowerwalls
are obtained. They are

L , © 16
o A
X [Bo(Ap)e™MalLi2 — By(A,)e iL/D] gin Ay7y (50

= 1
g (n,%]= lim ¥ —fxn]

L= n=0

X [Bo(hn)ers /2 — By{\,)e~ 3L/ gin A7, (51)

Physically, the interesting heat flux results are those near the point
72 = 0. For t;/L < 5.0, calculations show that.the Ly — « results are
practically indistinguishable from the results with Ly/L = 100. As-
suming L./L = 100, the heat flux at various locations of the upper and
lower walls with L = 0.1, 0.5, 1.0, 2.0'and 5.0 are tabulated and pre-
sented in Tables 2 and 3. By some additional superposition with the
one-dimensional result, the corresponding heat flux values for the
problem with the unnormalized boundary conditions considered in
[20] and [21] can be easily generated. The agreement is excellent for
all cases. In a direct comparison with the modified differential method
[21], results in Tables 2 and 3 have the same degree of accuracy as
those presented graphically in [21]. But the present first-order ap-
proximation represents a substantial reduction in mathematical
complexities. Equation (46) can also be applied to generate heat flux
results for planar systems with arbitrary wall temperature with rel-

Table 2 The heat flux at different locations of the

lower wall for the sample two-dimensional problem

with boundary conditio?s e;.s described by equation
47

7./L
L 0 1.0 2.0 3.0 4.0 5.0 ®
01 « 1000 0.966 0.942 0.925 0.914  0.880
05 = 0869 0.771 0.727 (.708 0.700  0.697
10 « 0700 0.591 0.561 0.553 0551  0.551
20 e« 0483 0.403 0.391 0.390 0.390 0.390
50 = 0.241 0.209 0.207 0.207 0.207  0.207

Table3 The heat flux at different locations of the

upper wall for the sample two-dimensional problem

with boundary conditiox(ls as described by equation
4

7o/l
L 9 1.0 2.0 3.0 4.0 5.0 @
01 0 0452 0.644 0.731 0.779 0.808 0.880
0.5 0 0436 0.600 0.658 0.681 0.690  0.697
1.0 0 0338 0.510 0.541 0.549 0.5561 0.551
20 0 0303 0.376 0.388 0.390 0.390 0.390
50 ¢ 0177 0.206 0.207 0.207 0.207  0.207
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atively little effort.

Concluding Remarks

A successive approximation approach is proposed for the solution
of problems in radiative transfer based on 2 differential formulation.
The problem is applied successfully to a one-dimensional problem
including the effect of anisotropic scattering. Both first-order
closed-form results and higher-order approximate solutions are
presented. These solutions are easily attainable algebraically and
converge quickly to the exact result. ]

Application of the present solution method to multidimensional
probiems encounters some difficulties. Important questions con-

“cerning the proper selection of trial solution, the approximation of

the intensity boundary condition and the development of a consistent
truncation criteria for the multi-dimensional governing equation are
still unresolved and require further investigation. Nevertheless, a
direct generalization of the one-dimensional first-order approximation
method to a two-dimensional problem with planar geometry is
demonstrated to be successful. The heat flux prediction agrees well
with the available exact results and results generated by other ap-
proximation techniques. The closed-form solution is mathematically
simple and can be used to generate heat transfer results for problems
with arbitrary wall temperature distribution.
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