-

heat transfer between parallel plates with top and bottom cooling and
correlated their analytical predictions in the range 0.1 <Pr <10* and
104 <Re <108 by

Nu = 12 + 0.03 Re®1 Pre2 . (4)
where
0.24
=088 - ———— 5
@ (3.6 + Pr) (5)
ag = 0.33 + 0.5¢—06Pr {6)

For the Prandti numbers of the present data set, the second term
in equation (6) is negligible compared with the first. In equation (5},
the second term is approximately —0.015 for the Prandtl numbers of
the present data set, so that the Shibani-Ozisik formula becomes

Nu = 12 + 0.03 Re®865py0.33 ) )]

Equation (7) is also presented in Fig. 3 and is seen to overpredict the
Nusselt number by about 50 percent.

Several reasons are offered for the differences between the data and
the predictions. First, it is difficult to achieve the idealized flow
conditions implicit in the analyses and there may have been a high
turbulence level in the recirculating flow. We also suspect the steel
plate had some roughness in the present experiments, and in the
Reynolds range of these experiments, this could well have contributed
to a higher Nusselt number. Second, the aspect ratio B/Dy varied from
1.5 for the Ashton-Hsu data sets to 5.5 for the present study, while
the Petukhov-Popov formula is applicable to a round cross section
roughly equivalent to a B/Dy = 1 and the Shibani-Ozisik formula is
applicable to a B/Dy, = .

Conclusions

The main objectives of the present experiments were to obtain ney
data on the effect of aspect ratio B/Dy, on heat transfer and compare
the data to existing theoretical and empirical results, Existing dat,
for round cross sections roughly equivalent to B/Dy, = 1 are repre.
sented by various empirical formulae such as the Petukhov-Popoy
formula, This formula underpredicts the results of Ashton.Hsy for
B/Dy, = 1.5 and for the present data for B/Dy, = 5.5. The Shibanj.
Ozisik formula, applicable to a B/D), = « overpredicts the heat
transfer rates. However, the present data and the Ashton-Hsu datg
are inadequate to provide a relationship for the heat transfer rateg
as a function of B/Dy.
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A Simplified Approach to
Shape-Factor Calculation
between Three-Dimensional
Planar Objects

W. W. Yuen?

Introduction

The objective of the present work is to show that by some simple
algebraic manipulation of known shape factors, the shape factor be-
tween a differential plane area element and an arbitrary three-di-
mensional planar object with straight edges can be written in
closed-form analytically. The shape factor between two planar objects
in which one of them has straight edges is reduced to a simple inte-
gration of a positive-definite nonsingular function over only one
surface area. Compared to the traditional method of direct numerical
integration over both surface areas, the present method represents
a substantial reduction of the computational effort. A detailed ex-
ample calculation is presented to demonstrate the utility of the’
present approach.

Analysis

The basic idea of the present approach is to express the shape factor
between a differential plane area element and a three-dimensional
object with straight edges in terms of known shape factors. The ex-
pression fundamental to the present analysis is the shape factor be-
tween a differential plane area element d4p and a right triangle A,
in a parallel plane, Consider the two planes with the orientation and

! Department of Mechanical ard Environmental Engineering, University
of California, Santa Barbara, Santa Barbara, CA 93106,

Contributed by the Heat Transfer Division for publication in the JOURNAL.
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division July
30, 1979.

386 / VOL. 102, MAY 1980

geometry as shown in Fig. 1. The shape factor between dAg and 4,
can be obtained from a simple contour integration [1] as

© v
tan~!
97 (u? + 212 (u? + dBL/2
Equation {1) can now be utilized to calculate the shape factor be-
tween dAg and an arbitrary triangle A; with orientation as shown in

Fig. 2. Using superposition, it can be readily shown that the shape
factor is given by

FdAu-A1 = (1)

Faay-A7 = Faae-o13 + Fado-0s5
— Faag-012 — Faag-028 ~ Faap-vez (2)

where Faa—ijk stands for the shape factor between dAq and the right
triangle with vertices £, j, and k. Utilizing equation (1), and after some
algebraic manipulation, equation {2) becomes

Faag-4 = G(xo, x1, %2, y2, d) (3)
with G(xOn X1, X2, Yo d)
= x1ye

2 [(x1? + dB)yed + d2(x; — x0)2]H2
[(xa2 + d2)yo? + d2(x; — 29)%]1/?
[d® + xqx3)

X tan™!

_ xoye

27 [(xo? + d )yt 4 d¥xo — x2)?]1/2

[(xe® + d%)y2? + d®xp — 22} V2
[d2? + xoxy)

It is interesting to note that equation (3} is applicable for both cases

with0 € xpg<x;Sxs0r Sxg=xg = x5,

Equation (3) is developed basically for cases in which Ay isa triangle
with one of its edges lying on the x axis or the y axis. But with the aid
of some additional shape-factor algebraic manipulation, equation {3)
is sufficient to be applied for other possibilities. Consider the two
triangles with arbitrary dimensions and locations as shown in Figs.

X tan™! (3a)
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3(a) and 3(b). In Fig. 3(a) it can be readily observed that after sub-
dividing the triangle into seven smaller triangles, each of the smaller
triangles is of the same general orientation as that of Fig. 2. Similarly,
after a simple rotation of the coordinate system in Fig. 3(b), the two
smaller triangles as shown have one of their axes lying on the x axis.
Equation (3) can be applied to each of these smaller triangles. The
shape factor between dA¢ and any parallel triangle can thus be written
as a sum of finite numbers of terms, each of which is an expression
similar to equation (3). This argument can be further extended to yield
the shape factor between dAg and a parailel pelygon. It is a well known
fact in geometry that any n-sided polygon can be composed into n-2
triangles. The shape factor between dAg and an re-sided polygon is
therefore a sum of n-2 terms, each of which is just the shape factor
between dAg and a parallel triangle.

Finally, the shape factor between dA¢ and a polygon which is not
parallel to dAg can also be calculated based on the present analysis.
The polygon must first be projected along its different lines of sight
from qu to its various vertices onto a plane parallel to dAg. The shape

Az
Ay
v7
'l
r-—-—-u-——i
d y
g x
dA, .

Fig. 1 Coordinate system for the calculation of shape factor between a dif-
ferentlal plane-area element and a parallel right iriangle

/\y

/ ~ ‘
~, 3 (%5, ¥p,d)

// =
O,_’/;\
/

= 4
~(x|,0,cl)

v

0‘_’
6 (x4,0,d)
\

Filg. 2 The geomelry and orientation of A, relative to the x — y axis for
equation (2)

Ay

AN
(b) N

(a)

Flg. 3 Examples of how to subdivide an arbitrary triangle into smaller trl- -

angles with the general orlentation and geometry as In Fig. 2(d)
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factor between dAo and an arbitrary polygon is simply equal to the
shape factor between dAg and the line-of-sight projection of that
polygon. The previous analysis can thus be applied.

For any three-dimensional planar object with straight edges, the
shape factor between dAp and the object’s different faces can now be
written, based on the present approach, as a finite sum of expressions
similar to equation {(3). Taking dA4p to be a differential area element
on a second object, the shape factor between two finite objects can be
obtained by a simple integration. It is important to note that the
present approach requires integration over only one surface area. The
integral, which consists of a finite number of terms similar to equation
(3), is positive-definite and without any undesirable singularity. In
contrast with a direct numerical integration over the general shape-
factor expression, this represents a substantial reduction in compu-
tational effort. It must also be emphasized that the restriction that
one of the two objects must be planar and have straight edges is really
not too severe since any curve surfaces can be approximated to an
arbitrary degree of accuracy by a sum of planar surfaces.

Examples of Application

To illustrate the utility of the present approach for actual shape-
factor evaluation, an example is now presented. )

This example deals with the shape factor between two rectangular
plates of identical dimension a X b. The two plates are separated by
adistance k and one of the plates is oriented at an angle 8 with respect
to the other. The detailed coordinate system is shown in Fig. 4.

The system is clearly symmetric with respect to the x axis. It suf-
fices, therefore, to calculate Faay-a, only for valuesof x > O0and y >
0. Consider now a differential area element dAg at (x, ¥, 0), and the
line-of-sight projection of A onto the plane z = h + b sin 8 can be

=5

V:K

Fig. 4 Coordinate system used in the first example of shape faclor calcu-
lation

Ayt

2 2 o i
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(—x-;i,yé%.z})
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Fig. 5 The line-of-sight profection of Ay from dA,ontothe plane z= K+ &
sin 8. The coordinates (x’, ¥, z) are measured from dA,. (x{ = bcos § —
1= a2—yyy’=a/2—yz;=h+ bsinff)
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readily generated. Depending on the value of x, the relative location
of the projected area with respect to {x, ¥, 0) has two possibilities as
illustrated in Fig. 5. The shape factor between dAj and Ayt can now
be readily obtained by direct application of equation(3). Forx <b
cos 3, the shape factor is given by '

g
Fap-an= 21 Faa-ai (4)
=

where the A;'s are the smaller areas as denoted in Fig. 5(a) with

FdA,_,..,=a(o,bcosﬁ—x,acosﬁ—x,g-—y,mbsinﬁ) (5}
FdAI..A,=G(0, m,%-—y,bcoaﬁ-—x,h+bsiuﬁ) (8)
a b .

Faa-4, =G0, m, vl 1+Esm,l.9,
x(l +£sin,ﬂ),h+bsin 6] (¥)]
. . .
. FdAI"A4 =G (Oa x x’E_ya h’] (8)

a
FdAI—A5=G(0» x, x,§+y, h‘) (9)

b .
Faar-as=6€ [Os n, [‘3‘ + y) (1 + y sin ,G),

x (1 +£sin ,B), h + bsin ,B) (10)
FdA;_A7=G(0: n,%-{-y,bcos,@—x,h+bsinsﬂ) (11)
Faa-as=G (0. beosfB—x,bcosf —x,%-i-y,h + b sinﬁ) {12)
and |
[g- —-y] (h + b sin B) cos B
= 13
" h cos B + x sing (13)
(%-Fy} (h + bsinB)cos 8
= 14
" heosB+zxsing (14)
For x > b cos 8, the shape factor is
4
Fya—an = 'Zl FdAl—Ai (15)
=
where the A;'s are areas as denoted in Fig. 5(b) and
Faae-4,=G (0 x, x, s h)
-G (o}pl P:B(E“y].h + b sin B) (16)
x\2
a
FdA[—Ae = G (Oa x! xr _2- + y: h’)
- G(O,p,p,g[a§+y),h +bsin B) (17)
x L
Faar-a,= G(: ( 2 mﬁ] 0.9 ——cosﬁ
b .
---y —cos B3, h+bsinf| (18)
2 q )

FdAl"Al=G['p_{:,(l"'éﬂ)rir_i}—lcosﬁv
. x h r

388 / VOL. 102, MAY 1980

Tablel Shape factors between two rectangular
plates with different aspect ratio (b/a), 3, and a/h.

b/a 0.2 0.5 1.0 2.0 5.0
8 a/h
0.5 0.001 0.003 0.009 0.018 0.024
w2 10 0.004 0.018 0.033 0.045 0.041
2.0 0.017 0.052 0.076 0.078 0.057
o« 0.271 0.240 0.200 0,149 0.087
0.5 0.010 0.023 0.040 0.060 0.071
wfd 10 0.032 0.070 0.108 0.132 0.119
2.0 0.086 0.165 0.213 0.216 0.157
« (588 0.547 0.479 -0.388 0.234
0.5 0.015 0.036 0.069 0.117 0.178
0 1.0 0.049 0.117 0.200 0.286 0.359
2.0 0.135 0.286 0415 0.509 0.573
® 1.000 1.000 1.000 1.000 1.000
a b .
E+y-cos,6,h+bsmﬁ (18)
r
with
p=x—becosf (20
2\1/2
el
2
2\1/2
r=(x2+(a—+y) } (22)

By a simple applicatmn of the reciprocity relation, the shape factor
between Ay and Ay is simply given by

a/2
Fay-ar=2 j; J; Faap-ay dxdy

Equation {23) can be readily evaluated numerically. Results for
various values of @, b, k, and § are presented in Table 1. As expected,
the shape factor decreases with increasing h and increasing 8. For the
case with 8 = 0 and the case with § = 7/2 and h = 0, the present so-
lution gives exact agreement with the available results [i].

(23)
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Heat Transfer through
Irradiated, Semi-transparent
Layers at High Temperature

R. Viskanta'! and D. M. Kim

Noemenclature

D, = function defined as fiu*~2exp(—t/u}B(u)dp

Eua = Planck’s black body distribution function

E,, = exponential integral defined as [Ju"—2 exp(—t/u)du
F = radiative flux in the y-direction

F; = external flux incident on gas- matenal interface

k = thermal conductivity of material

n = index of refraction

g = total (conductive + radiative) heat flux-in y-direction
R, = function defined as [bri(p)p"=2 exp(~t/u}Bp)dp
r; = reflectivity of gas-material interface

T = temperature

t; = transmissivity of gas-material interface

. Ty = function defined as f§t: () (u")"2 exp(-tfu’)ﬁ(n)d,u

y = distance measured from the opaque wall
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