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A Simplified Approach to the
Evaluation of the Geometric-Mean
Transmittance and Absorptance for
Gas Enclosures

Utiiizing a simple mathematical relation and Stoké’s theorem, the geometric-mean trans-
mittance and total absorptance between en infinitesimal arec and a finite planar element
is reduced to a line integral around the planar element and an area integral, A concept
of fundamental solutions is introduced. These are solutions in which the finite areas are
horizontal right triangle with three specific orlentations. Based on superposition, solu-
tions for arbitrary finite areas are shown to be readily generated algebraically from these
fundamental solutions. The geometric-meen transmittance and total absorptance be-
tween two finite areas are reduced to single numerical integrations, thus reducing much
of the mathematical complexity. '

Fundamental solutions for mean beam lengths of the geometric-mean total absorptance
in the weak-band, strong-band and very-strong-band limits are generated analytically
in closed form. Based on the existing one-dimensional wide barid correlation, these limit-
ing expressions are shown to be sufficient for the caleulation of the geometric-mean total

absorptance at all optieal thicknesses. A sample calculation is presented.

¥

Introduction

In many heat transfer calculations for practical engineering systems
with high temperature such as fires and combustion furnaces, the
evaluation of the surface-surface and surface-medium radiative ex-
change in an enclosure with an intervening absorbing-emitting me-
dium is a problem of considerable importance. Mathematieally, this
task involves the evaluation of the so-called geometric-mean trans-
mittance and absorptance for the considered enclosure.

Formally, definitions of the geometric-mean transmittance and
abserptance are quite simple arid straight-forward and their impor-
tance was realized more than 30 years ago [1]. A great deal of effort
has heen made since then to tabulate these quantities for various
systems. The success of these efforts, however, is quite limited largely
because of the mathematical complexity of the problem. Today, exact
evaluations for these quantities are restricted only to a few cases with
special geometric symmetry or optical thickness limits [2-6]. For most
other cases, the current state-of-the-art technique is to utilize an
empirical “mean beam length” and the corresponding one-dimen-
sional results [1, 2], While this method appears to be reasonably ac-
curate for some selected enclosures, its applicability to general en-
closures still remains unproven and has uncertain accuracy.

The major difficulty in the calculation of the geometric-mean
transmittance and absorptance for a given enclosure is that they re-
quire the evaluation of a complicated integral. The integral involves
not only the geometry of the two considered surfaces, but also their
relative orientation, Because of the presence of angular variables,
many traditional numerical techniques for integral evaluation cannot
be applied. The integral can also become singular for some selected
cases. The objective of this work is to show that by using a simple
mathematical relation and Stoke’s theorem, the geometrie-mean
transmittance and absorptance between an infinitesimal area element
and a finite area can be expressed as sums of a simple line integral
around the boundary of the finite surface and an area integral. These
integrals can be evaluated analytically for some selected cases. For
all cases, they can be tabulated numerically by standard tech-
nique.
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For general application, the present work proposes a concept of
fundamental solutions. These solutions are geometric-mean trans-
mittance and absorptance between an infinitesimal area of arbitrary
orientation and horizontal right triangles of three specific orientations.
Utilizing the principle of superposition, the geometric-mean trans-
mittance and absorptance between an infinitesimal area and any finite
area can be written as sums and differences of these fundamental
solutions. Based on the present approach, these fundamental solutions
are readily generated in closed-form. If the intervening medium is a
non-gray gas, the important physieal quantity is the geometric-mean
total absorptance (which is the integral over wavelengths of the geo-
metric-mean absorptance). Pundamental solutions for this quantity
in the weak-band, strong-band and very-strong-band limits are also
readily generated. Using the existing wide-band correlations, these
limiting expressions are demonstrated to be sufficient for the evalu-
ation of the geometric-mean total absorptance at all optical thickness.
It is interesting to note that until now, only tabulations of the weak-
bank limit of the geometric-mean total absorptance for some selected
simple systems are available in the literature [1, 2, 4] largely because
of the mathematical complexity.

To illustrate the accuracy and the simplicity of the present ap-
proach, the weak-band, strong-band and very-strong-band limit of
the total geometric-mean absorptance between two rectangles of
different orientations is generated. For the weak-band cases which
were considered by Dunkle (4] with a different approach, the agree-
ment is excellent. The present approach, however, is readily seen to
be more general and simple to use, .

Mathematical Formulation

Utilizing the geometry and coordinate system as shown in Fig. 1,
the geometric-mean transmittance between areas d4; and As, Tad1-2,
can be written 5

1 {ny* ry){ng« ry)e—ow

Tadl-g = dAs (1)

F,;“-z Az wr?

where Fy1-5 is the shape factor [1] between dA; and Ag, 1, and nz are
the unit normal vectors to areas d4; and dA; respectively, ry is a unit
veetor peinting away from dA; to dAs, r is the distance between the
two areas, and a, is the absorption coefficient. Physically, Tadl-z is
the fraction of enetgy leaving surface dA; which is transmitted
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Fig. 1 Coordinate system used in equation (1}

through the medium and arrives at As. To caleulate the fraction of
energy leaving surface d4; which is absorbed by the intervening
medium, the concept of geometric-mean absorptance is 1mportant
Itis

1 . .
In Wiz = LR (6)
Faio Loy

It is interesting to note that Rgy.5 is the weak-bank geometric mean
beam length originally introduced by Dunkle [4]. Since 4;(r) is pro-
portional to r1/2 and In r in the strong band and very-strong band
limit, respectively. Sg1.0 and Wgj.g can be interpreted as the corre-
sponding geometric mean beam length in those limits. For two finite
areas Ajand Ag, equations (4, 5) and (6) are generalized to

Ris= AnFm f FaioRa1.0dA,, (4a)
§1pM2 = fF_S V244, 5
1-2 A1F12 d1-25g1-2 1 (5a)
In Wy = —— f Farzn WayodA,. (6a)
1F12

Interms of Ry_g, §1-z and W, 5, a correlation analogous to Table 1 for
the total geometric-mean absorptance between two finite areas A;
and Ay can be generated. It is presented in Table 2.

Since equations (1, 4, 5), and (6) are all of the same general form
as the left hand side of equation (A3) in Appendix I, they can be
simplified. Equation (1), for example, can be written as

mFa1aTad1-2 = J; £1(r)(ry X ny) - dS;
2

1 . . 1 — g=oar | (r)
erdiz = f (o - ry)lmg - xo){l — e7o) dAd,. (2) + f (o, nz){g’1(r) + g'!'"]dAz (N
Fd1—2 An re Ag r
If the medium is a non-gray gas with absorption bands, equation (2)  where g1(r) satisfies the equation
can be integrated over one band to yield the total geometric mean ) e
absorptance as ghiry - st _ — 8
. r r
Ui dl-z = _j;_ oy d1-20A Equations (4, 5), and (6) can be written as
1 J" (1 + re}ng - 1) Ai(r) dAs gy TFareRaio= f £2(r)(ry X ny1) - dS;
Fara wr? Sz
where [ a;dA represents integration over the ith absorption band and + f {n1*ma) |g%a(r) + Eﬂ da; (9
A; is the corresponding effective bandwidth for a one-dimensional
system of thickness r. Effective bandwidths for various important Forn oSy gl/2 =
bands for different gases have been demonstrated to be adequately ~74d1-29d1-27" = .fsa g3(r)(ry X ny) « dSg
approximated by the so-called wide-band correlation [2]. The corre- ")
lation proposed by Edwards, et al. [2, 7] is presented in Table 1. + f (n *ngz) [g’s(r) Y-l dds (10)
Substituting results presented in Table 1 into equation (3), it can 42 r
be readily seen that the evaluation of o412 requires only the fol-
lowing in{egrals: ' a Y wFg1zIn Way_p = J;z g4lr}(r; X my) - dS2
1 (ny *+ry)(nz - ra) .
Ria= 2 X2 g, @ + f, end [pue + 840 any ap
di-2 v Az ar Az r
1 (g r)nz-ry
Sa)12 = j dA 5
(Sar-2) Faig Va2 wrd? : ®) with ga(r), g1(r), and g4{r) satisfying
Nomenclature,

ay = absorption coefficient

Ay, A = area elements

A; = effective bandwidth of the fith band
d = parameter defined in Fig. 2(b)

E3 = exponential function

and (31}

and {2)

= elliptic function of the first

H = functions defined by equations (23, 28)

n;, nz = unit vectors defined in Fig. 1
ry, rs = unit vectors defined by equations (1)

r = distance between areas dA; and dAj
R;_; = weak-band geometric mean beam

beam length, equation (6)

Z1, Z11, Zu1 = fundamental solutions defined
by equations {21, 32) and (33)

Z;—; = generalized mean beam length defined
by equation (21)

@12 = geometric-mean abserptance defined
by equation (2)

1
F (I‘, ﬁ]
kind
fi—j = shape factor between area A; and A;
gii =1, 2, 3, 4) = functions defined by
equations {15) thru (18)
G = functions defined by equations (22, 26)
and (30)
h = parameter defined in Fig. 2(a)
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Sioj =

length, equation (4)

strong-band geometric mean beam
length, equation {(4)

u = parameter defined in Fig. 2(b)

v = parameter defined in Fig. 2(b)

w = parameter defined in Fig. 2{b)

Wi.a = very-strong-band geometric mean

@;,1-2 = total geometric-mean absorptance of
the ith band

¥(y) = function defined by equation (29)

# = parameter defined in Fig. 2{a)

A = wavelength

p{x) = function defined by equation (27)

Ta1-2 = geometric-mean transmittance de-
fined by equation (1)
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Table 1 Effective bandwidth correlation equations for isothermal gas

Pressure-
broadening
Parameter
= L2 Lower limit of & Upper limit of A Effective bandwidth A
4C1C; 7, cm~1 7, em~L n, em~L

Bs1 0 BCy A=0X

BCs Cs(2—B) A = 0y(XP.)12 — BC,

, —_ C22XP

3 — o = € -

Ca( ,8) A Ca (ln 4032 +2 ﬁ)
B>1 0 Cy A=0,X

Cs @ ‘A‘=Cs(lnﬂ+1)

Cs

C1, Cy, Ca, b, and n given in reference [7]. X is mass path length, oS, g/m2. P, = [(P + Pn,)/Pg]" where Py, = 1atm, P is partial pressure of absorbing gas, and

Py, is partial pressure of Ny broadening gas in atmospheres.

Table 2 Effective bandwidth correlation equations for multidimensional isothermal gas

Pressure-
broadening
Parameter
_C2Pe Lower limit of 4 Upper limit of 4 Effective bandwidth A
4C1C3 7, em™! 7, em™? 7, em™! .
B=<1 0 BCs A=CipRiy
BCs Ca(2 - 8) A = ColpSi_oPe)V2 ~ BCy
_ - T CoPpWioPe , o,
B>1 0 Cs A =CipRi
C3 @ Z=0Cs|ln CIPW1—2+ I)
Cs

€1, Cz, Cy b, and n given in reference [7]. p is mass density g/m*, and S i pathlength m, P, = [(P + Py,)/Pq]" where P, = 1 atm, P is partial pressure of absorbing

gas, and Py, is partial pressure of N2 broadening gas in atmospheres.

g2(r)

1
glolry—"—=~ (12}
r r
, galr) _ 1
g'alry — o ra/2 (13)
1
g -2 0L (14)
r
Equations (8, 12, 13), and (14) ean be readily solved to yield
E
gi(r) = — 23 (15)
g2lry =1 (16)
2
&alr) = — iz (17
Inr 1
= ———— 18
ga4lr) o o {18)

with Ea(eyr) in equatioh (15) being the familiar exponential integral
function defined by

@ p—xt
En(x)=j: etn dt. n=z1 (19)

Utilizing equations (15-18), equations (7, 9, 10}, and (11} become

E
wFa10T a1 = — J; —#2 {r; Xny).dS,
2

+ f (ny-1p) 22 EolayrdAs  (20)
Az r

810 / VOL. 103, NOVEMBER 1981

- : : dA
xFa1gRayp = — _j‘ (ry X ny) - dSs — _j' (ny-np) =22 (21)
8. Az r

TFaraSa g\t = — 2 (1 XD 45

3J5: rli2
1 (npdae
3J4, rif2 (22)
) 1 1
Faraln Warp= = | (—"”+—) (1 X m0) - dS,
S\r o 2n

2
' 1 o dAs
=3 oen) 52 2

In terms of actual evaluation, equations (20-23) represent a great
reduction in complexity in contrast to equations (1, 4, 5), and (8).

Fundamental Solutions

Equations (20-23) can be readily evaluated in ¢closed-form for some
systems with simple geometry. But for general application, the most
important results are fundamental solutions for these expressions in
which dA; is an infinitesimal area at the origin with arbitrary orien-
tation and As is a right triangle at a horizontal plahe above the origin,
It can be shown that it is sufficient to consider only four particular
orientations of Az. The geometry and the associated coordinate sys-
tems for the four fundamental solutions are illustrated in Figs. 2(a)
and 2(b). The superposition procedure can be generated from these
fundamental solutions as outlined in Appendix II. ‘

For the right triangle [ as shown in Fig. 2(b), equations (20-22) and
(23) can be readily simplified into the following form
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Fig. 2(a) Side-view of the relative posilion and orientation of dA4 and A;
for the fundamental solutions

Ziw, v, 0, h 8)=(hsinf —wecos NGO, u, 1,0, w2+ h2)
+ucos0G(w,w+w,1,0,u?+h?)
u? 4 v 2wy

+ (w cos & — h sin B)G(O, Uy = w2+ h?
u u

—~cos BH (1, v, w,0,0). (24)
For the geometric-mean transmittance, Z; stands for (Fg1_275 q1-2),
and G(m,n, A, B, C} and H{u, v, w, d, ¢) are given by

1 pnEglan(At?+ Bt + C)172
A,B,C)==
Gim,n, )= fm (At? + Bt + C)

ax j‘xz J‘”Ez[ax(xz +y2+ h2)”2]d
x ¥

Hu,v,w,d, ¢} = - L (x4 y2 4RI

dr (25)

1

(26)

where y1 = w cos ¢, y2 = wcos ¢ + v/u(x —d —wsing), x; = wsin
¢+ d and xp = wsin ¢ + d + u. For the weak-hand limit of the geo-
metric-mean total absorptance, Z1 stands for (Fa1-s Ra19)! with

G{im,n,A,B,C)
__1 | [2An+Bn+ O+ 2410+ AVB)
“7AV2 " 23(Am® + Bm + C)12 + 2412m + AL2B
1 [(}’22+Iz+h2)1’2+y2]
=— dx. {28
H(u,v,w.d,rﬁ). - .E; In e F e+ sy, & (28)

Equation (28) can be integrated in closed-form with a standard in-
tegration table [8]. For the strong-band limit of the geometric-mean
total absorptance, Z1 stands for (Fa1_s Sq1-2V/2)! with

G(m,n, A, B,C}

_ 4 [ n+B/2A F( ) L)

32[A(AC —~ B2V [[n + B/2a] \* g1

m + B/2A 1
“imaBRAl (" tm), 21/2]] @9

where
1 1/4
p(x) = cos™! [ (24x 4 B)? +1 {30)
4AC — B?

The function F(T', 1/21%) in equation (29} is the elliptic integral of the
first kind. The function H(u, v, w, d) is given by
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hsing
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¥
vy (IID (IV)
T

Fig. 2(b) Top view of orlentations of A, for the four fundamental solu-
tions

H{u,v,w,d, ¢)

92 1 ! .
T3 Ju 2+ ko F 7(3'2)"2"175 -F ‘Y(y1).2T,2' dx  (31)
where
x24 h? |14
= | 5
¥(y) = cos Iy2+x2+h2] 2

At the very-strong-band ¥mit, Z; stands for (Fgi_a In wai_2)!
where

_1 prin[4t2+Bt+ (]
Glm, n, 4,B,0) = f mlATrT

wJdm ' [At2+ Bt +C)
. 1 [tan_1 B+ 24n
2w (4AC — B2 (4AC — B2
. B+2Am
= tan ‘m (33)
and
1 = 1 Y2
=— -1
He o d 0 =g [ o [ta" (x2 + hO2
_ Y1
— tan " T h2)1f'2] dx (34}

Similarly, the fundamental solutions for right triangles IT, III, and IV
as shown in Fig. 2(b) are given by

Zulu, v,w, b, 8) = —[{u+w)cosf — hsin 8]G’{0, v,1,0,kR2

ut+?
¥
2

+ (u + w)? +E(wcosﬂ—hsinﬁ)G(w,w+u,
u

2 2,2
- gu?w,%+ ha) —cos fH (u, v, w, 0, w/2) (35)
u u

Zu, v, d, b, 6y =—h sin §cos § + 1)G(d,d + 1, 1,0, h2(1 + sin?f))
—{u+d)ycos8G(—hsing, —hsinf+p1,0R2+ (u+d?

u?+p?
¥
ul

+ hsinB(l+cosB)+EdcosBI G(d,d+u,
L

2
23(—;1sine——‘id),h2+(hsino+3d))
u u u
—cos 8H (u, v, — hsind, d,0) (36)
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Zrvlu,v,d, h,8) = (wecosf—hsin®) GO, u,1,0,w2+h2)
~ucos0G(w, w—v,1,0,u?+Ah?) + (hsin - wcos GO, u, 1,
+ u?/u?, — 2wofu, w? + h?) + cos 8w, — v, w,0,0) (36a)

The functions G and H in equations {35) and (36) are defined in-
dentically as in equations (25-35).

To demonstrate the utility and simplicity of the present mathe-
matical approach in application for finite area, the weak-band,
strong-band, and very-strong-band limits of the geometric-mean
beam length between two rectangular plates with orientation as shown
in Fig. 3 is now calculated. This example is selected because some
results in the weak-bank limit with 8 = 0 and 8 = =/2 have already
been tabulated by Dunkle [4] with a different approach. A direet
comparison is thus possible. The strong-band and very-strong-band
limits, on the other hand, have never been reported in the litera-
ture,

Consider a differential area dAy at (x, y, 0); A can be readily
broken up relative to dA; into four fundamental right, triangles. Using
superposition, the three limits of the geometric mean beam can be
written in the following generalized form

4
Zia-an = );l Zaar-4; (37
where
Zoar-a;, = Z1 % =¥, b,— x cos B, h + x sin §, ﬂ) (38)
' Zga—4, = Z1 (b, g —v,~xcosf,h+xsing, ﬂ) (39)
Zia-43=Zu (b, y+ g, —xcos B, h+xsinf, ﬁ) (40)
Zanr-a; = 21 {y+§, b, —xcos B, h+ x5sin B, ﬁ) (41)
Equation (37) can be integrated over A to yield
2 a- b
Zar—Apn= E . .J; Zaa-andxdy (42)

In the above expression, Za-ay stands for Fa—ay Ray-ans Far-an
Sy ~au'? and Faj—ay tn W, in the weak-band, strong-band and
very-strong-band limit, respectively.

Equation (42} can be readily evaluated numetrically in all three
limits. For all cases, the integral converges quickly with no difficulty.
Results for the three limits for various values of @, b, and § with h =
1.0 are presented in Tables 3, 4 and 5. For the weak-band cases with
£ = 0and 8 = w/2, the agreement with Dunkle’s result [4] is exact. It
is interesting to note that for the considered cases, the difference
between the geometric-mean beam lengths at the three limits is quite
insignificant.
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APPENDIX 1

For an arbitrary function f(r) and utilizing the coordinate system
as shown in Fig. 1, it can be shown by direct differentiations that the
following identity holds.

v X [f{r)r) X my]

—n [f’(r) +f(—r)]. (AL)

r

f{r) - fr)

r

= (1" r)ry

In the above expression, V is the gradient operator, ny and ry are
vectors as defined in Fig. 1 and f/(r) = df/dr. If equation (A1) is in-
tegrated over the area As, one obtains
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Table3d Fg4,_a,;Ra;-a between two rectangular
plates with different values of a, b, and 8 with h = 1.0.
{Values in parentheses are Ra—ap)-

b
g R 0.4 1.0 4.0

R (1.20) (1.47) (2.84)

0.4 0.006 0.022 0.054

(1.25) (1.55) (3.02)

/2 1.0 0.015 0.051 0.133
(1.43) (1.76) (3.40)

4.0 0.030 0.120 0.415

{1.14) (1.35) (2.28)

0.4 0.032 0.066 0.123

(1.19) {1.39) (2.34)

wfd 1.0 0.070 0.150 0.295
(1.33) (1.56) (2.65)

4.0 0.141 0.329 0.838

(1.02) (1.06) (1.20)

0.4 0,047 0.102 0.194

{1.06) (1.11) (1.25)

0 1.0 0.102 0.222 0.431
‘ {1.20) (1.25) (1.42)

40 0.194 0.431 0.897

Tabled Fa—anSa—ay'/? between two rectangular
plates with different values of a, b, and 8 with h = 1.0
. (values in parentheses are Sa,_4,)-

b
B k 0.4 1.0 4.0

(1.00} (1.44) (2.66)

0.4 0.005 0.018 0.031

(1.17) (1.54) (2.91)

/2 1.0 0.013 0.041 0.075
(1.41) (1.75) (3.25)

4.0 0.025 0.090 0.220

{1.00) (1.35) (2.19)

0.4 0.028 0.057 0.080

(1.18) (1.238) (2.25)

/4 1.0 0.064 0.127 0.189
{1.30} {1.53) (2.57)

4.0 0.121 0.261 0.507

(1.04) (1.06) (1.19}

0.4 0.047 0.099 0.177

(1.09) (1.11) {1.26)

0 1.0 0.099 0.211 0.384
(1.18) (1.23) (1.45)

4.0 0.176 0.384 0.746

Table5 Fga,_a,In Wy,_a, between iwo rectangular
plates with different values of a, b, and 8 with h = 1.0
(values in parentheses are Wy, ;).

b
8 k 0.4 1.0 4.0

(1.22) (1.49) (2.71)

0.4 0.001 0.006 0.019

(1.28) (1.53} (2.78)

/2 1.0 0.003 0.014 0.045
(1.40) (1.72) (3.17)

4.0 0.007 0.037 0.141

(1.15) (1.36) (2.14)

0.4 0.004 0.015 0.041

(1.18) - (1.38) (2.21)

w/4 1.0 0.010 0.035 0.100
(1.30) (1.53) (2.52)

4.0 0.028 0.090 0.292

(1.02) (1.08) (L.17)

0.4 0.001 0.006 0.025

(1.06) (1.11) (1.21)

o 1.0 0.006 0.020 0.067
(1.17) (1.21) (1.36)

4.0 0.025 0.067 0.194
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¥ (a} ¥ (b)
5
q -3 6~ == 4
el 15 I ———1:]3
X x
Ih sind _l L

Agas™ Aias™Aae ™ Paas

Agss ™R35~ Azs~Paaae

Fig. 3 [lustration on how an arbitrary right trlangle can be constructed from
fundamental right triangles

f X [f(r)rl X n]] «nzddse
Az
= f, ot lf(r) ] dag

f {n;*ny)

The first term of the above equation can be simplified by Stoke's
theorem. Equation (A2) thus becomes

f()

i + 12 ]dAz (A2)

_j' (= )z - 1} () —

f()

f [f(F)rs X ] - dSz'i‘f (mema) [/ + 52| Az (A3)

where dS; indicates a line integral around the boundary of Ay, To
yield the correct result, the line integral must be performed in a
clockwise direction around A when it is viewed from the origin. Be-
cause of the mathematical restriction on Stoke's theorem, it is im-
portant to note that equation {A3) is applied only when Az is a simply
connected area (i.e., it has no “hole’_’). It is interesting tonote that in
the limit of '

1
fr) _f(Tr)=§ (Ad)

equation {A3) is reduced to

. . 1 %

j‘ {ny - ry){ny - 1) dAp=—= (riXny) dS, (AB)
Az re 2Ja: r

Equation (A4) is exactly the “contour-integral” expression for shape

factor proposed originally by Moon [9] and Sparrow [10].

APPENDIX II

Since dA; cannot “see’ any area with y < —h sin £ or the plane z
= h, it suffices to show that any area A; with y = —h sin 6 can be
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b —

Fig. 4 Coordinale system used in the sample calculation

constructed from fundamental right tnangles with orlentatlons as
shown in Fig. 2(b).

Figure 3(a) shows how an arbitrary rectangle with one edge lying
on the y axis can be constructed as a sum of two fundamental right
triangles. A rectangle situated away from the y axis can be generated
as difference of these rectangles as shown in Fig. 3(b). Figure 3{c}
shows how a “right oriented” right triangle can be constructed asa
combination of rectangles and fundamental right triangles. Note that
right triangles such as Aj3s can be constructed as a combination of
a rectangle and the fourth fundamental right triangle. There are two
possibilities for “left oriented” right triangles. They are demonstrated
by Figs. 3(d) and 3(e).

Geometrically, it can be readily observed that any triang]e on the
plane z = h with y > —h sin f can be constructed from right triangles
oriented as shown in Figs. 3(¢), 3(d) and 3(e). Since any polygon can
by principle be expressed as a combination of 4 finite number of tri-
angles, the fundamental solutions can thus serve as “building blocks”
for solutions with Ag being an arbitrary polygon. If As has curve
boundary, it can be approximately to any degree of accuracy by a finite
number of a rectangle. The corresponding selution for the geometric
transmittance and absorptance can therefore be approximated ac-
curately as sum and difference of a finite number of fundamental
solutions. -
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