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1 Introduction

Radiative heat transfer in an absorbing and emitting
medium constitutes an important element in many
engineering disciplines. A great deal of work has been
reported in this area. Most, however, has been confined to
one-dimensional systems, largely due to the complexity of the
problem. Over the past decade, there has been a considerable
increase in the interest of multidimensional radiative transfer.
Different numerical techniques [1,2] and approximation
methods [3-5] have been developed for some selected cases.
But the success of these works, in terms of their applicability
to radiative transfer in general multidimensional systems, is
still quite limited. -

Numerically, both the Monte Carlo method [1] and the
Hottel zonal method [2] have been widely used for
multidimensional computations. But results of the com-
putation generally show that these methods can be quite time
consuming and inaccurate under certain conditions. Without
significant improvements, it appears unlikely that these two
methods can be effectively applied for predicting radiative
heat transfer in practical engineering systems.

For approximate analysis, the most successful technique for
multidimensional radiative transfer appears to be the
modified differential approximation. Based on this method,
Glatt and Olfe [3] calculated the temperature distribution in a
gray medium bounded by a black rectangular enclosure.
Utilizing essentially the same technique and aided by the
introduction of a number of geometric parameters, Modest
[4, 5] obtained solutions not only for a rectangular enclosure
with gray walls, but also for a two-dimensional problem with
cylindrical symmetry. But both of these approaches require
extensive numerical computation for their prediction of
temperature distribution and heat flux. It also appears dif-
ficult, if not impossible, to apply these methods for systems
with arbitrary geometry. The value of any approximation
method depends on its simplicity, accuracy, and applicability
to general systems. None of the existing approximation
methods appears to have all of these qualities.

! Now with The Xerox Corporation, Redondo Beach, Calif.

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
HEeaT TRANSFER. Manuscript received by the Heat Transfer Division September
16, 1982.

Journal of Heat Transfer ,

enclosure with gray medium are calculated. Successive approximate solutions are
generated by a point allocation method in which the temperature profile is ex-
pressed as polynomials of successively higher order. The technique is shown to
converge rapidly with the third-order results already comparing favorably with
available numerical solution. It is also demonstrated to be computationally ef-
ficient. Comparing with a solution with the same number of unknowns generated
by the Hottel zonal method, the present approach represents a reduction in com-
putational time by at least one order of magnitude. Based on the mathematical
behavior of the numerical results, simple empirical closed-form approximate ex-
pressions for both the heat transfer and temperature profile in general
multidimensional systems at radiative equilibrium are proposed. For a rectangular
- enclosure, these expressions are demonstrated to be quite accurate over all optical

The objective of the present work is twofold. First, the
point allocation method, which was successful in generating
accurate solutions to one-dimensional radiative transfer

. problems even including the effect of conduction and

anisotropic scattering [6, 7], will be demonstrated to be ap-
plicable for two-dimensional problems. A gray medium
bounded by a rectangular enclosure at radiative equilibrium is
analyzed as an illustration. By expanding the unknown
temperature distribution as a polynomial, the governing
integral equation is reduced to a set of algebraic equdtions in
terms of the expansion coefficients. Successive solutions with
increasing degree of accuracy can be readily generated.
Comparing with the Hottel zonal method, the present ap-
proach is both accurate and efficient. The third-order
solution, which involves 28 unknown expansion coefficients,
already compares favorably with the available numerical
results. This rapid rate of convergence appears to hold for all
optical thicknesses and aspect ratios of the rectangular en-
closure. By expressing elements of the resulting matrix
equation in terms of a class of generalized exponential in-
tegral functions which was studied extensively in a recent
work [8], the present solution method is extremely efficient
numerically. All solutions are generated by evaluating a finite
number of single integrations and a matrix inversion. The
number of single integrals required is approximately the same
as the number of double integrals fequired for a Hottel zonal
calculation with the same niamber of unknowns.

The second objective of the present work is to develop
simple closed-form approximate expressions for the
prediction of radiative heat transfer and temperature profile
in a gray medium at radiative equilibrium within a general
multidimensional enclosure. By requiring that the ap-
proximation yield the correct result both in the optically thick
and thin limits, a generalized diffusion approximation is
proposed. For the present rectangular enclosure, the accuracy
of the approximation is shown to be quite good.

2 Mathematical Formulﬁtion

The physical model and its associated coordinate system is
shown in Fig. 1. For simplicity, the four boundaries are
assumed to be black isothermal surface with normalized
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Fig. 1 Geometry and coordinate system for the two-dimensional
rectangular enclosure

emissive powers of 1, 0, 0, and 0, respectively. From standard
reference [9], the energy equation for the medium at radiative
equilibrium is given by

_ n(r’')(r—r’) ,
aw=|,, T Crrds @
—alr--r’l
+SV o )>7r|r—r” 12 adv

where 9(r)=oT*(r) is the blackbody emissive power; r’, a
point located at the boundary and n(r’) the corresponding
unit normal vector; a, the absorption coefficient which for the
present work is assumed to be constant; and C(r—r’), a
function given by

e—ulr—r'lv '=-7
Cir-r’) = (2)
0 otherwise

The medium’s temperature is determined by solution to
equation (1). Once the temperature distribution is determined,
the radiative heat flux is given by

B a(r')r-r’) , ,
Q(I")—Sav m—C(r—r )(I"—l' )dS (3)
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For the present two-dimensional problem, all integrals in

a(r—r")dV

Nomenclature

u———L' )
> (I+7

(r,¢)

'—'f(l-rf)

l

the x-direction can be integrated. Introducing the.following '
dimensionless variables

Fig.2 Domain of integration used in equations (13-15)

@
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L, = 2aY
L, = 2aZ,

equations (1) and (3) can be simplified to yield
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dz(’l,ﬂ':ﬂ)

absorption coefficient

function defined by equation (2)
function defined by equation (8)
function defined by equation (9)

[ T T 1 A

Gonk (X)) function defined by equation (22)
Hpypies(0,0) function defined by equations (A3) and
(Ad) '
L, = optical thickness of the enclosure in the y-
direction
L, = optical thickness of the enclosure in the z-
direction
M;; = function defined by equation (20)
n = unit normal vector
NY,;; = function defined by equation (27)
NZ;; = function defined by equation (28)
P;; = coefficients of assumed polynomial
defined by equation (18)
; = heat fluxin the /-direction
Q = heat flux vector
r = *“polar”’ coordinate defined by equations

(11) and (12)

434/ Vol. 106, MAY 1984

r = position vector
S, (x) = exponential integral function
T = temperature
Wonk (1,0) = functions defined by equations (21)
x = coordinate
y = coordinate
z = coordinate
I'(n) = gamma function
¢ = optical thickness variable in the z-direction
n = optical thickness variable in the y-direction
d = dimensionless emissive power
¢ = angular coordinate defined by equations
(11) and (12)
¢, = angle defined by equation (16)
¢, = angle defined by equation (17)
o = Stefan-Boltzman constant
Subscripts
0 = optically thin limit
¢ = optically thick (conduction) limit
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where ‘
di(n,n’ 58 =2 Li(m—n")* + L3S — )% ®
dz(ﬂ,ﬂ',0=d1(ﬂ,ﬂ',§'y—1) . (9)
In equations (5), (6), and (7), S,(x) is a generalized ex-
ponential integral function defined by

20> e Mdt
A 1o
Analytical and numerical properties of S, (x) are presented in

[8].

Since S, (x) is a smooth function for all values of x,
evaluation of the integrals appearing in equations (5), (6), and
(7) is quite straightforward for any assumed temperature
distribution. Note that even at regions with d, =0 or d, =0,
these integrals remain finite because the product of the in-
tegrand with the respective volume element and surface
element remains finite. To illustrate this mathematical
behavior more clearly and also for the convenience of
numerical computation, equations (5-7) are now rewritten in
terms of a ‘‘polar’” coordinate. Introducing two new
variables, r and ¢, such that

fops 1)
= — COoS
n =1 L COSyp
2r .
=+ —sing (12)
L,
equations (5), (6), and (7) can be rewritten as
2r 2r .
419(11,():5 S 19(1;+ — cose, {+ —sm«p) (13)
() L, L,
5] L2
S, (ndrde + S S, [ 5 1+ §‘)sec‘p:| do
#1
2r 2r .
o,mo=-|{ o+ £ cosp.+ 7 sing) (14)
v2 LZ .
S,(r)cosedrde — S S, [ > (1+ g‘)secw] sinede
el
O (D)= H a(( + 2 cosect 2’s’n) (15)
¢ 8) = o) ] L S@, L Ny
. 2 L,
S, (n)singdrde + S S, [ 5 1+ QseC¢] cosedy
#l
with
L, (1+7)
Sl
= - —_— 16
(4} tan L,a+9 (16)
Li(1-n)
=tan~! ——— 17
P2 =tan L,a+0) a7

The region of integration (r,¢) for the above double in-
tegration at a given (n,{) is illustrated by Fig. 2. Note that
equations (13~15) are indeed free of any apparent singularites.

3 Method of Solution

The method of point allocation is now applied to develop
solutions to the present problem. Specifically in the nth ap-
‘proximation, the unknown temperature distribution is
assumed to be a polynomial as follows
i=n j=2n
=25 2 Puyi¥y (18)
i=0 j=0
Substituting equation (18) into equation (13), the following
equation results
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Fig. 3 Comparison between the first three order approximate tem-
perature solutions with results generated by the Hottel’s zonal method
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Fig.4 Comparison between the first.three order approximate heat flux
solutions with results generated by the Hottel's zonal method: -

i=nj=2n
Pyijlan® ¢ =My ;(n,§,Ly,L,)]
i=0 j=0 ,
=Go0(§Tm* )+ Gt n7) (19)
where
mi=2i ni=j | -. ) ,
20N[F N/ 2\ 2\
- E C)CE) ()
mi=0 ni=0 > M1 ni L, L,
T T W i (1,0 (20)
with
Woni (0,5) =§ S( )COSm<PSiH"<pr'"+"Sk(r)drd<p (21)
@)
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Table 1(a) Expansion coefficient P;; and the corresponding temperature profile generated
by-a third-order solution with L, =L, =1.0

Pgy = —3.4222e-02

Poo= 2.5000e-01 Poi = — 2.2896e-01 Py = 1.0359¢01
Pos= 8.516e-03 Pys = — 8.7643¢-03 Pos = —4.3067¢-03 Py = — 1.0359-01
Py = 9.6454e-02 Py, = —5.8112e-16 Py = —8.0216e-02 P4 = —3.0798¢-02
Pys = —3.6243e-03 Py = 3.3752e-02 Py = —8.5162e-02 Py = 5.3491e-02
Py, = —3.0798e-02 Pi= 6.4432e-02 Pys = —5.9828¢-16 Pys = —1.6837¢-01
Py = 1.0463¢-01 Pgy= 4.3067e-03 P = —3.7104e-02 Pgy = —3.3752¢-02
Pe3= 1.3701e-01 Pey = —1.0463e-01
e 0 0.2 0.4 0.6 0.8 - 1.0
1.0000 0.0859 0.0848 0.0819 0.0767 0.0661 0.0401
0.8000 0.1151 0.1132 0.1080 0.0997 0.0878 0.0680
0.6000 0.1427 0.1405 0.1339 0.1237 0.1095 0.0891
0.4000 0.1729 0.1702 0.1621 0.1489 0.1304 0.1046
0.2000 0.2081 0.2047 0.1945 0.1775 0.1534 0.1211
0.0000 0.2500 0.2458 0.2332 0.2118 0.1813 0.1422
0.2000 0.3002 0.2953 0.2802 0.2540 0.2159 0.1663
—0.4000 0.3606 0.3551 0.3379 0.3070 0.2591 0.1901
—0.6000 0.4336 0.4280 0.4102 0.3763 0.3181 0.2190
—0.8000 0.5222 0.5175 0.5025 0.4726 0.4122 0.2832
—1.0000 0.6297 0.6278 0.6235 0.6152 0.5828 0.4599
Table 1(b) Q, [7,£) generated from a third-order solution with L, =L, =1.0
n
¢ 0 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000
1.0000 0.0000 0.0184  0.0362 0.0528 0.0671 0.0795 0.0894
0.8333 0.0000 0.0229 0.0442 0.0653 0.0845 0.1025 0.1158
0.6667 0.0000 0.0274 0.0539 0.0784 0.1002 0.1234 0.1385
0.5000 0.0000 0.0275 0.0641 0.0961 0.1234 0.1474 0.1651
0.3333 0.0000 0.0371 0.0766 0.1124 0.1433 0.1714 0.1929
0.1667 0.0000 0.0455 0.0905 0.1329 0.1695 0.1996 0.2215
0.0000 0.0000 0.0534 0.1029 0.1527 0.1961 0.2333 0.2588
—0.1667 0.0000 0.0577 0.1163 0.1732 0.2255 0.2687 0.2970
-0.3333 0.0000 0.0593 0.1243 0.1897 0.2496 0.3102 0.3459
—-0.5000 0.0000 0.0560 0.1256 0.1996 0.2784 0.3535 0.3984
—0.6667 0.0000 0.0550 0.1152 0.1868 0.2570 0.3889 0.4594
—0.8333 0.0000 0.0417 0.0867 0.1437 0.2271 0.3721 0.5375
- 1.0000 0.0000 0.0225 0.0451 0.0686 0.0925 0.1179 0.6436
Table 1(c) Q,(x,{) generated from a third-order solution with L, =L, =1.0
n
¢ 0 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000
1.0000 0.2439 0.2435 0.2331 0.2213 0.2055 0.1830 0.1594
0.8333 0.2645 0.2632 0.2533 0.2386 0.2205 0.1974 0.1735
0.6667 0.2907 0.2868 0.2807 0.2613 0.2537 0.2167 0.1873
0.5000 0.3200 0.3163 0.3071 0.2877 0.2659 0.2358 0.2023
0.3333 0.3572 0.3523 0.3408 0.3215 0.2924 0.2582 0.2192
0.1667 0.3992 0.3945 0.3827 0.3625 0.3239 0.2836 0.2378
0.0000 0.4484 0.4443 0.4272 0.3999 0.3614 0.3130 0.2578
-0.1667 0.5059 0.4977 ‘ 0.4791 0.4459 0.4063 0.3482 0.2787
-0.3333 0.5630 0.5590 0.5416 0.5112 0.4614 0.3892 0.3005
-0.5000 0.6253 0.6225 0.6091 0.5834 0.5311 0.4448 0.3237
—0.6667 0.6828 0.6817 0.6735 0.6631 0.6109 0.5283 0.3469
—0.8333 0.7310 0.7315 0.7349 0.7395 0.7328 0.6719 0.3710
—1.0000 0.7615 0.7621 0.7719 0.7848 0.8034 0.8362 0.8922 .
Gm!n,k (X,Y)
17 L,
tan” ! x =—=0-9
=x* SO 3+ m+n—i (Xs€CO)tAN™ pCOS™ "~ ¥ pdp (22) 2
Evaluating equation (19) at (n+1)(2n+ 1) discrete locations
and (n=i/n, i=0,...n; {=j/n, j=—=n,...,0,...n), a
L, matrix equation is generated for the determination of P, e
1t =1+ (23) Once the coefficients P, ; are determined, the
corresponding heat fluxes can be written as
- Ll (1 ) i=nj=2n
1= U Q, (1,0=— 3 Y Py;NYy, (n§Ly,Ly) 25)
L, i=0 j=0
==+ 24
£ 2 ( 9 24) +Gl.o.o(§'+,7l+)—Gl,o,o(§'+,77—)
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Table2 Third-order results for the radiative heat flux at the lower wall, Q;(,— 1)

L, L, 7=0 0.1667 0.0500 0.8333
0.1 0.9687 0.9689 0.9712 0.9769
4 0.5 0.9624 0.9627 0.9647 0.9697
0.1 1.0 0.9579 0.9582 0.9603 0.9658
2.0 0.9485 0.9488 0.9514 0.9578
5.0 0.9310 0.9313 0.9345 0.9421
0.1 0.19210’ 0.9213 0.9241 0.9402
0.5 0.7954 0.7973 0.8137 0.8606
1.0 1.0 0.7615 0.7621 0.7848 0.8362
2.0 0.7514 0.7537 0.7730 0.8183
5.0 0.7376 0.7395 0.7561 0.8003
A 0.1 0.9158 0.9159 0.9159 0.9273
0.5 0.7074 0.7081 0.7152 0.7760
5.0 1.0 0.5686 0.5708 0.5924 0.6963
2.0 0.4476 0.4521 0.4919 0.6350
5.0 0.3802 0.3859 0.4362 0.5854
Table3 Third-order results for the radiative heat flux at the upper wall, Q. (4,1
L L, n=0 0.1667 0.5000 0.8333
0.1 0.4153 0.4124 0.3899 0.3484
0.5 0.0612 0.0611 0.0607 0.0599
0.1 1.0 0.0172 0.0172 0.0171 0.0171
2.0 0.0021 0.0021 0.0021 0.0021
5.0 0.0000 0.0000 0.0000 0.0000
0.1 0.9029 0.9016 0.8849 0.7521
0.5 0.5178 0.5117 0.4616 0.3585
1.0 1.0 0.2439 0.2435 0.2213 0.1830
2.0 0.0638 0.0633 0.0596 0.0523
5.0 0.0000 0.0000 0.0000 0.0000
0.1 0.9156 0.9155 0.9155 0.8981
0.5 0.7003 0.6994 0.6877 0.5753
5.0 1.0 0.5356 0.5328 0.5012 0.3657
2.0 0.3276 0.3230 0.2825 0.1864
5.0 0.0750 0.0734 0.0614 0.0357
Table4 Third-order results for the radiative heat flux at the side wall, Q,(1,£)
L, L, = -018333 -0.3333 0 0.3333 0.8333
0.1 0.4719 0.3452 0:2767 0.2208 0.1565
0.5 0.3142 0.0717 0.0356 0.0206 0.0101
0.1 1.0 0.1866 0.0207 0.0090 0.0048 0.0015
2.0 0.0828 0.0048 0.0018 0.0008 0.0000
5.0 0.0308 0.0000 0.0000 0.0000 0.0000
0.1 0.5409 0.4964 0.4704 0.4454 0.4078
0.5 0.5601 0.4359 0.3694 0.3202 0.2286
1.0 1.0 0.5375 0.3459 0.2588 0.1929 0.1158
2.0 0.4732 0.2076 0.1233 0.0740 0.0313
5.0 0.3319 0.0491 0.0165 0.0058 0.0000
0.1 0.5350 0.4909 0.4660 0.4426 0.4081
0.5 0.5815 0.4711 0.4136 0.3607 0.2829
5.0 1.0 0.5928 0.4435 _ 0.3689 0.3021 0.2076
2.07 0.5789 0.3847 - 0.2959 0.2224 0.1266
5.0 0.5168 0.2401 0.1526 0.0948 0.0328
Table5 Third-order results for the centerline temperature #(0,{)
L, L, £E=-1.0 -0.4 0 0.4 1.0
0.1 0.5179 0.3329 .0.2500 0.1935 0.1373
0.5 0.5206 0.0959 0.0533 0.0345 0.0189
0.1 1.0 0.5226 0.0405 0.0203 0.0123 0.0050
2.0 0.5264 0.0125 0.0058 0.0039 0.0005
5.0 0.5330 0.0000 0.0000 0.0000 0.0000
0.1 0.5596 0.5093 0.4797 0.4503 0.4016
0.5 0.6171 0.4544 0.3697 0.2959 0.1927
1.0 1.0 0.6297 0.4336 0.2500 0.1729 0.0859
2.0 0.6345 0.2205 0.1178 0.0653 0.0219
5.0 0.6415 0.0601 0.0170 0.0054 0.0000
0.1 0.5706 0.5257 0.4995 0.4733 0.4284
0.5 0.6839 0.5636 0.4953 0.4272 0.3083
5.0 1.0 0.7474 0.5782 0.4830 0.3892 0.2292
2.0 0.7990 0.5626 0.4355 0.3180 0.1363
5.0 0.8276 0.4134 0.2500 0.1419 0.0306
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Fig. 5 Isotherms (—) and flux lines (- for the case with
Li=L,=10
i=nj=2n
Q9= 33 2 Pu;NZy;(n8.Ly,Ls) (26)
i=0 j=0
+Go 0§ )+ G o8t m )
where
mi=2i ni=j . . ; ni
) ()" (5
= —- — 27
NYais M,ZQO ,,?-:40 ( mi ) ( ni/\L, L, 7
T i 2 (10
and
mi=2i ni=j 2i J ) mi 2 ni
= — o 28
N, sz:o mzjo(mi)(ni)(Ll) (Lz) (28)

N2 mITW i1 2(00)

It is important to note that based on the mathematical
properties of S,(x) developed in [8], a set of recursive
relations for G, ,.(n,¢) and W, ,,(n,{) can be readily
generated. They are listed in Appendix A. Based on these
relations, M, ;, NY,,; and NZ,;; in the above equations can
be readily evdluated. Indeed, the analysis in Appendix A
shows that the present technique requires only the numerical
evaluation of a finite number of single integrals for a com-
plete solution to the problem.

4 Results and Discussion

(a) Numerical Accuracy and Efficiency. The major
advantage of the present solution method is that extremely
accurate solutions for both the temperature and heat flux
distribution can be readily obtained with little effort.
Predictions of the centerline temperature and heat flux
distribution at the bottom walls generated by the first three
approximation (n=1,2,3) of the present approach and those
obtained by the Hottel zonal method as reported in [4] are
compared in Figs. 3 and 4. The rapid rate of convergence
shown in those figures holds in general for all optical
thicknesses L, and L,.

Direct comparison between different numerical procedures
based on computer time is difficult and often misleading
because computer time depends not only on the complexity of
the calculation, but also on the size of a computer and the
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efficiency of the programmer. A more accurate comparison
of the relative efficiency between the present technique and
the Hottel zonal method is the number of numerical integrals
required by the two methods and the relative complexity of
the required integrations. Based on results presented in
Appendix A, the number of single integration required by the
present technique is approximately the same as the number of
double integrals required by the Hottel zonal method with the
same number of unknowns. Since numerical evaluation of a
double integration is at least one order of magnitude more
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complex than that of a single integration, the present
technique is clearly numerically more efficient than the Hottel
zonal method.

Another advantage of the present technique is that in
addition to temperature distribution, detailed information
concerning heat flux distribution is also generated by the
computation with no additional effort. The third-order results
of Py, 9(9,9, Q,(n,) and Q;(n,{) for the case with
L, =L,=1 are presented in Tables 1(a), 1(b), and 1(c).
Results in these tables can be combined to yield the isotherm
~and flux line plot shown in Fig. 5. Similar results for other
typical cases (L,, L,=0.1, 0.5, 1.0, 2.0, 5.0, 10.0) are
presented in [10]. Centerline temperature and heat flux
distribution at the three boundaries for some typical cases
(which might be of interest to researchers for comparison with

other techniques) are presented in Tables 2-5. It is interesting

to note that to generate the same information based on the
Hottel zonal method would require a tripling of the number
of double integrations. A direct comparison of numerical
results also shows that a 28-zones Hottel zonal calculation is
generally less accurate than the present third order solution.
To the best of the present authors’ knowlege, no other
solution methods (approximate or exact) for radiative transfer
can generate as much information with such numerical ef-
ficiency as the present technique.

(b) Important Physical Results. The qualitative
behavior of the heat flux and temperature distribution of the
present two-dimensional problem is well known from
previous studies [1-5]. Results presented in Tables 2-5
demonstrate the expected behavior more quantitatively over a
wide range of system parameters.

Over the years, numerous analysis of different engineering
systems have been presented in which the radiative heat flux is
approximated as a simple diffusion process with Q= —
4/39 9. Until now, quantitative evaluation of the accuracy of
this assumption has never been made, except for one-
dimensional systems. The isothermal and flux line plot
generated by the present work as shown in Fig. 5 offers an
interesting possibility for such evaluation. Note that for
L,=L;=1 (which is optically thick compared to most
combustion systems), the isothermal line is in not per-
pendicular to the flux line. The diffusion approximation is
thus in general not accurate for such systems, both in
predicting the magnitude and the direction of the radiative
heat flux vector. The validity of many previous analysis which
utilized this approximation is thus needed to be reevaluated. It
is also interesting to observe that because of the temperature
slip, the isotherms shown in Fig. 5 are not parallel to the
isothermal wall.

(c) Approximate Solutions. For practical engineering
application, the development of accurate and simple-to-use
expressions for the prediction of heat transfer and tem-
perature profile within a multidimensional systems at
radiative equilibrium is important. Until now, development of

such expressions, even empirically, is difficult due to the lack |

of reliable numerical data. The present results, which include
detail information concerning both temperature and heat flux
distribution, serve ideally as basis for such development.

In one-dimensional analysis, it is well known [9] that the
traditional diffusion approximation is quite accurate and
yields the following expression for the radiative heat flux,

0= 1
T 1+43L/4
Using the fact that 1/L and 1 can be interpreted as the op-
tically thick and thin limits of the radiative heat flux, the
present work proposes to generalize the above expression for
multidimensional application to become

(29)
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Fig. 8 Comparison between equation (31) and the corresponding
third-order solution of the centerline temperature 6[0,f) withLy =Lo =L

1

i=Xx,9,2 (30)

Qi=
, 1 3

0o, | 30.,

In the above expression, Q,; stands for the optically thin
limiting expression of the radiative heat flux which is a
function only of geometry, and Q.; stands for the
corresponding optically thick limit which can be readily
generated by solving an equivalent conduction problem with
identical boundary conditions. Since solutions to conduction
problems (by both analytical and numerical method) are well
known, equation (28) clearly represents an exceedingly
simplified approach in evaluating approximately radiative
heat flux in a multidimensional system.

It is important to note that equation (30) is developed
entirely erppirically from physical reasoning. It is intended
only to be a tool for practicing engineer to generate first-order
estimate of the radiative heat flux. For the present rectangular
enclosure, however, the accuracy of the expression is sur-
prisingly good. Heat flux distributions and average heat flux
at the three boundaries predicted by equation (30) and the
corresponding third-order results for different system
parameters are compared in Figs. 6 and 7.

Utilizing a similar argument, the present work proposes the

following empirical expression for the temperature
distribution
1Q1 Q!
9= (1 - )0c 2 i
Qo1 /%t Qi ™ @D

In the above expression, . and d, stand of the optically thick
and thin limiting expression of the medium’s temperature,
respectively. For a general enclosure, J, can be generated by
solving an energy equation such as equation (13) in the op-
tically thin limit. For the rectangular enclosure, for example,
it can be readily shown that d, is given by
1
Jo(m, ) = 2. (P2 91) (32)
T
Similar to Q.(n,¢), 9.(n,¢ can be generated from an
analytical or numerical solution to a corresponding con-
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duction problem. The accuracy of equation (31) is again quite
good for the rectangular enclosure. Centerline temperature
profiles generated. by equation (31) and the corresponding
third-order results for some typical cases are shown in Fig. 8.

5 Conclusion

Radiative heat transfer in a rectangular enclosure with gray
medium at equilibrium is considered. The method of point
allocation is demonstrated to be effective in generating ac-
curate solutions to the problem. Utilizing properties of S, (x),
a class of generalized exponential integral functions studied
extensively in a previous reference [8], the present solution
technique is shown to be extremely efficient compared to the
Hottel zonal method. Detailed temperature and heat flux
distribution both within the medium and at the different
boundaries are readily generated from the present approach.
Based on the present results, the physics of multidimensional
radiative heat transfer is illustrated and discussed.

Simple closed-form expressions are proposed for the
estimate of heat transfer and temperature profile in a
multidimensional system at radiative equilibrium. These
expressions are generated empirically by requiring that they
have the correct behavior in both the optically thick and thin
limits and are intended only for practical engineering ap-
plication. For the rectangular enclosure, the accuracy of these
expressions over all optical thicknesses is demonstrated to be
good.
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APPENDIX A

Properties of W, ., [1,¢) and G, , , (x,y)

Using the recursive relation of S, (x) as illustrated in [8], it
can be readily shown that

[ $cxmnde= (m+m)[Spsnir©) (A1)
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s=m+n

=~ m+n+k+1-s 5!

Based on the above equation, equation (21) is reduced to

s=m+n Hm,, s( )
Wm,n,k(nnﬁo):“(m-f-n)![ ___.’_’i;_'_"—‘p) (A2) |
5=0 .
m+1 n+1
'N——)r
_ D+ DM+ (=n1 ( 2 ) ( 2
2 m+n+2
r(*57)
Sm+n+k+l(0)]
where
Hm,n,k,s (7’1 <P)
2x
:50 [r ()P Smintk+1-slr(p)lcos™ ¢ sin” pdyp (A3)

Values for r(¢) can be readily deduced from Fig. 2. Indeed,
H, .. :(n,¢), which is required for the solution to equation

m,
(19), can be expressed as

Hypn1 s (1,0)=Gpms (17,8 )+ G s (7M7)
(=D"[Gpms (1" ,87 )+ Gy (§75m7)]
(=D"[Cms (17,8 )+ Gy s (57 07)]
(=)™ MG s (18" ) + Gy s (51 17)]

where n*, 7, ¢*, and ¢~ are as defined by equations (23)
and (24). Similar expressions can also be generated for
H, . ,s(n0, which is required for the evaluation of heat
fluxes.

The foregoing development proves that the evaluation of
W n1(n,0) and W, . ,(5,¢) requires only the evaluation of
G ,unx (X,¥). Based on equation (22) and properties of S, (x),
it can be readily shown that G,,, ,, , (x,y) satisfies

(A4)

kam n—k 0(X,y) k<n
G = ok
m,mk (x.7) {X"G,,,'o,k_,,(x, Y) n<k<m+n (A3)
and )
Sy e manl6? +y2) 2 ]ym 1 x"H!
Gmn > == ; A6
o) (1+m[Ce +) 77 (A9
+ (m_I)Gm—l,n+2.0(x’y)—XGm,n—l.O(xry)
1+n
whenm>1and n>1 and
S5 mo i[O +y2) " Jey™ !
Gpox (x,y) = — 220X (A7)

[(X2 +y2)'/z]m—k+l

+ (k=2)G g s 16Y) + (M= 1DX2G py_y 04— 3(%,)

when k> 2.

Based on the foregoing relations, it is apparent that the
determination of G,, .« (x,y) requires only the numerical
evaluation of G, 4 0(x,5), Gono (%), Gpo1(x:y)andG ,, ¢,
(x,y). In the Nth approximation, the value of m and n
required for the evaluation of various coefficients in
equations (19), (25), and (26) ranges between 0 and 2N + 1. At
each allocation point, each integral is required to be evaluated
4 times (for both n*, »~, and ¢*, ¢7). For QN+ 1)(N+1)
allocation points, a total of 16Q2N+2)(2N+ 1)(N+1) single
integrations are thus required for the Nth order solution. A
Hottel zonal calculation utilizing (2N + 1)(N + 1) zones, on the
other hand, would require a total of QN+ 1)(N+1)
[N+ 1)(N+ 1)+ 1]/2 double integrations.
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