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Point mean beam length, a new concept to enhance the
computational efficiency of multidimensional, non-gray
radiative heat transfer

Walter W. Yuena and Wai Cheong Tamb

aDepartment of Mechanical Engineering, Santa Clara University, Santa Barbara, California, USA; bFire
Research Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

ABSTRACT
A new concept of point mean beam length (PMBL) is introduced. For
enclosures with simple geometry, this concept provides a fundamental
self-consistent interpretation on the various different definition of the con-
ventional mean beam length. The concept is further demonstrated to be
effective in enhancing the computational efficiency for multidimensional
radiative heat transfer in non-gray media. In the evaluation of radiative
exchange between two perpendicular areas with a common edge, the use
of PMBL leads to a factor of 100 to 400 reduction in computational effort
compared to the direct integration approach. For practical applications,
PMBL is combined with RADNNET (a neural network correlation for a one-
dimensional CO2/H2O/soot combustion mixture) to generate two highly
efficient and accurate solvers for the evaluation of exchange factors
between two parallel or perpendicular rectangular areas of arbitrary dimen-
sions with an intervening combustion mixture.
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1. Introduction

The concept of mean beam length (MBL) was introduced many years ago by Hottel and other
researchers [1–3] as a practical tool to estimate the effect of radiative heat transfer in a multi-
dimensional non-gray system. Since most, if not all, of the spectroscopic gaseous emission data
were generated from one-dimensional line-of-sight measurements, there was a need to justify the
application of the data to practical combustion systems that are generally multidimensional. Since
direct integrations over wavelength and geometry are too complicated to carry out (particularly
in the 1960s, 70’s and 80’s with the lack of computational power), much research were directed
toward the development of an effective length scale (identified with the name mean beam length,
MBL, by Hottel [1]) for combustors with 3-D geometry and gases with different absorption bands
[4–9]. The success of such efforts, however, were limited as MBL was found to be different for
combustors with different geometries. Due to its spectral dependence, MBL was also different for
different absorption band with different optical thicknesses. Currently, for an entire uniform iso-
thermal medium radiating to its entire boundary, the recommended approach is to assume that
MBL is the product of the optically thin limiting expression of MBL (which can be shown to be
equal to 4V/A with V being the volume and A the bounding area of an enclosure) and a
“correction factor” (recommended to be 0.9 Hottel and his coworkers [1]). But with little theoret-
ical justification, this approach is generally considered to be “approximate” and “qualitative” by
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the practical engineering community. Safety factors are typically required to compensate for these
uncertainties in engineering designs. This recommended approach is also limited in its applica-
tion since it can only evaluate the average radiative heat transfer to the entire boundary. There
are currently no recommended approach to determine the distribution of the heat transfer to its
boundary from an entire uniform isothermal medium other than by direct numerical integration.

The interest in MBL has decreased significantly over recent years. Due to the increase in com-
putational power, the focus of the radiation research community is more on development of
effective computational schemes. While efforts were made to integrate the MBL concept into the
zonal method [10,11], the success is somewhat limited due to the complex dependence of MBL
on geometry and mixture properties. Even with the increased computational power and the sig-
nificant amount of research on computational method over the past ten years, direct numerical
computation of the radiative heat flux in a 3-D enclosure is currently still too complex and time
consuming for a homogenous non-gray medium [12]. The radiation solver in all of the existing
CFD heat transfer code (e.g. CFAST [13], FDS [14], FLUENT) continues to use approximation
methods to deal with the non-gray multidimensional radiative effects without much validation.
Fundamentally, there is an urgent need for a validated computational approach which can
account for the non-gray multidimensional effect of radiative heat transfer accurately and
efficiently.

In the present work, a new concept of point mean beam length (PMBL) is introduced. In con-
trast to the traditional concept of MBL which is defined for radiative exchange between two finite
areas or between a volume and its total surrounding surface, PMBL is defined for radiation emit-
ted from a differential area (at a point in a finite area), transmitted to and absorbed by a second
finite area. Numerical data show that while PMBL is still a function of absorption coefficient of
the intervening medium similar to the traditional MBL, its dependence is not strong for a given
geometrical configuration. A constant length scale, the “optimal” PMBL (OPMBL), can be used
to predict accurately the spectral transmission between the differential area and the second finite

Nomenclature

a, ak absorption coefficient
Ai area (i ¼ 1,2)
dAi differential area (i ¼ 1,2)
ds1s2 differential exchange factor between

differential area dA1 and finite area A2

Dx dimensional variables, Figures 4a, 4b
Dy dimensional variables, Figures 4a, 4b
Dz dimensional variables, Figures 4a, 4b
E3 exponential integral function
E error using a constant length scale to

approximate the transmissivity between
dA1 and A2, Eq. (10b)

fv soot volume fraction
Fd1�2 differential view factor between differential

area dA1 and finite area A2

F1�2 differential view factor between finite area
A1 and finite area A2

L pathlength
Lpmb point mean beam length
Lopmb optimal point mean beam length
Lmb conventional mean beam length
s1s2 exchange factor between finite area A1

and finite area A2

pH2O partial pressure of H2O

S error function used to determine OPMBL,
Eq. (10a)

X1 dimensional variable, Figures 13a and 13b
X2 dimensional variable, Figure 13a
Y1 dimensional variable, Figures 13a and 13b
Y2 dimensional variable, Figures 13a and 13b
Z2 dimensional variable, Figure 13b
DX dimensional variable, Figures 13a and 13b
DY dimensional variable, Figures 13a and 13b
DZ dimensional variable, Figures 13a and 13b

Greek symbols
fx dimensionless variable, Eqs. (12) and (13)
fy dimensionless variable, Eqs. (12) and (13)
gy dimensionless variable, Eq. (15) and (16)
gz dimensionless variable, Eq. (15) and (16)
h1 angular variable, Eq. (1)
h2 angular variable, Eq. (1)
sg one-dimensional transmissivity of a gas

mixture, Eq. (18)
sd1�2 transmissivity between area dA1 and A2,

Eq. (2)
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area over the entire range of the absorption coefficient. The 1-D total integrated absorption or
transmission model can thus be used with one length scale (OPMBL) to predict the multidimen-
sional absorption and transmission. For an enclosure with symmetric geometrical configuration
such as a sphere, PMBL is identical to the conventional MBL and its value is demonstrated to be
consistent with the various conventional MBL’s defined for the different limiting expressions of
gas band absorptance. In fact, OPMBL gives a theoretical justification of the “correction factor”
used in the conventional MBL approach. For numerical computation, OPMBL reduces the evalu-
ation of radiative exchange between two surfaces to a single area integration over the emitting
area, which can be done accurately and efficiently. As illustrations, two fast and accurate radiation
solvers for the evaluation of radiative heat transfer between two parallel or perpendicular rect-
angular surfaces with arbitrary dimensions are developed and made available to the engineer-
ing community.

2. The concept of point mean beam length (PMBL)

For a diffusely emitting area dA1 and a second finite area A2, the differential exchange factor is
given by

ds1s2 ¼ dA1

ð
A2

cos h1 cos h2
pL2

e�aLdA2 (1)

where hi ði ¼ 1, 2Þ is the angle between the unit surface normal at the two differential surface
dAi (i¼ 1, 2) and the line of sight between the two differential surfaces. L is the length of the line
of sight and a is the absorption coefficient of the intervening medium. A point mean beam
length, Lpmb is defined to be the equivalent length such that the transmissivity between the differ-
ential area dA1 and the finite area A2 can be written as

sd1�2 ¼ ds1s2
dA1Fd1�2

¼ e�aLpmb (2)

where the differential view factor, Fd1�2 is defined by

Fd1�2 ¼
ð
A2

cos h1 cos h2
pL2

dA2 (3)

Eq. (1) can be integrated over area A1 to yield to the total exchange factor between the two finite
areas

s1s2 ¼
ð
A1

ð
A2

cos h1 cos h2
pL2

e�aLdA2dA1 (4)

The conventional mean beam length, MBL, for the two finite areas A1 and A2 is defined as

s1�2 ¼ s1s2
A1F1�2

¼ e�aLmb (5)

with F1�2 being the view factor given by

F1�2 ¼
ð
A1

ð
A2

cos h1 cos h2
pL2

dA2dA1

A comparison between Eqs. (2) and (5) yields the following relation between PMBL and MBL,

e�aLmb ¼ 1
A1F1�2

ð
A2

Fd1�2e
�aLpmbdA2 (6)

It should be noted that for a general enclosure, PMBL is defined for a local differential area and
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is not the same as MBL. But for enclosure with geometrical symmetry such a sphere, infinite
cylinder and slab, PMBL is identical at every point of the emitting surface. PMBL is thus identical
to the conventional MBL for such enclosures.

A spherical enclosure is used to illustrate the mathematical behavior of PMBL. This geometry
is selected because the conventional MBL for sphere has been studied extensively by many inves-
tigators [2, 4] using different expressions of gas absorption band. The relationship between PMBL
and the conventional MBL concepts can thus be formally established. Using the coordinate sys-
tem as shown on Figure 1, Eq. (1) becomes

ds1ds2 ¼ R2 1þ cos hð Þ2
pL4

e�aLdA1dA2 (7)

Consider A2 as the entire spherical surface, Eq. (7) can be integrated over the sphericalsurface to
yield (a similar expression was also derived in reference [3])

ds1s2
dA1

¼ � 1
aR

e�2aR þ 1

2 aRð Þ2 1� e�2aRð Þ (8)

Using Eq. (2), the PMBL is given by

Lpmb

R
¼ � 1

aR
ln � 1

aR
e�2aR þ 1

2 aRð Þ2 1� e�2aRð Þ
� �

(9)

The PMBL is a function of optical thickness (aR) as shown in Figure 2. Numerically, however, it
can be shown that from the perspective of the exchange factor (ds1s2), the effect of optical thick-
ness is not strong as a range of value for the PMBL over moderate optical thickness can be used
to generate reasonably accurate approximation to the exchange factor. To find the “optimal” value
of the MBL (OPMBL), an error function, S(L), between the actual exchange factor and the
approximate value generated by a constatn length scale, L, is introduced as follow

S Lð Þ ¼
ð aRð Þ0:01

0
E Lð Þ2d aRð Þ (10a)

with

E Lð Þ ¼
���� ds1s2dA1

� Fd1�2e
�aRL

R

���� (10b)

Figure 1. Geometry and coordinate system for a spherical system.
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The upper limit of the integration in Eq. (10a) is taken to be the point at which the transmissivity
is 0.01 because both the approximate and exact expression of the transmissivity is close to zero
and the error is insigficant. The numerical value of OPMBL, established by the minization of
S(L), also shown in Figure 2, is determined to be

Lopmb

R
¼ 1:168 (11)

The effectivenss of OPMBL is illustrated by a comparison between the exact exchange factor (Eq.
(8)) and the approximate exchange factor generated by Lopmb (e�aLopmb) as shown in Figure 3. The
agreement is excellent with a maximum absolute error of less than 0.03 . In general, the error is
higher in the region with large optical thickness (aR > 3). But this discrepancy is not important
practically as the transmissivity is small (<0.05). In previous studies [2, 4], the MBL for a weakly
absorbing band was established to be 4R=3, which is equivalent to the optically thin limit of
Lpmb, as shown in Figure 3. The MBL for a strongly absorbing band (the squre-root limit) was
determined to be 6 R/5, which is consistent with Eq. (11). It is interesting to note that Lopmb is
nearly identical to 0:9Lmb, 0, which is the empirical MBL relation currently recommended for
usage over all optical thickness.

Numerical studies show that the concept of OPMBL is an effective representation of MBL for
other geometrical configurations such as infinite cylinders, parallel slab and general two-dimen-
siional systems. A detailed presentation of these results is quite extensive and will be presented in
a separate publication. For the remainder of this paper, the focus will be on the development of
OPMBL for two specific three-dimensional geometries and to demonstrate how the PMBL con-
cept can enhance the computational efficiency of general three-dimensional non-gray radiative
heat transfer.

3. PMBL for two fundamental three-dimensional configurations

The two fundamental three-dimensional configurations are shown in Figures 4a and 4b. In both
cases, dA1 is a differential area at the origin with a unit normal in the z direction. In Figure 4a,

Figure 2. The effective of optical thickness (aR) on PMBL for a spherical enclosure and the value of OPMBL.
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A2 is a rectangular area parallel to dA1 with a dimension Dx � Dy at the plane z ¼ Dz: After
some mathematical manipulation (detail given in Appendix A), it can be shown that the PMBL is
reduced to a semi-analytical expression as follow

Lpmb

Dz
¼ � 1

aDz
ln

1
Fd1�2

1
2

E3 aDzð Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2y þ 1

q0
@

1
A

2

E3 aDz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2y þ 1

q� �2
64

3
75

2
664

8>>><
>>>:

� 1
p

ðffiffiffiffiffiffiffiffiffif2xþf2y
p

fx

arcos
fx
s

� �
e�aDz

ffiffiffiffiffiffiffi
1þs2

p

1þ s2ð Þ2 sdsþ 1
p

ðffiffiffiffiffiffiffiffiffif2xþf2y
p

fy

arsin
fy
s

� �
e�aDz

ffiffiffiffiffiffiffi
1þs2

p

1þ s2ð Þ2 sds

3
775
9>>>=
>>>;

(12)

with fx ¼ Dx
Dz
, fy ¼ Dy

Dz
and E3 xð Þ being the third exponential integral function. Fd1�2 isthe view

factor given by

Fd1�2 ¼ 1
2p

fx

1þ f2x
� 	1=2 tan�1 fy

1þ f2x
� 	1=2

" #
þ fy

1þ f2y

 �1=2

tan�1 fx

1þ f2y

 �1=2

2
4

3
5

8><
>:

9>=
>; (13)

The spectral behavior of Lpmb is illustrated in Figure 5, in which Lpmb for a square area A2 (Dx

¼ Dy) of different size (Dx/Dz) are plotted against the optical thickness aDz. For each goemetric
configuraton, an OPMBL is evaluated and shown as a point on the PMBL curve. As expected,
Lpmb is independent of optical thickness, approaching the line-of-sight distance (Dz) as the size of
the square diminishes (Dx ! 0). In general, Lpmb decreases with optical thickness for a square
with fixed dimensiion (Dx/Dz). This behavior can be explained by noting that as the absorption
coefficient increases, the region of the square away from the z-axis will have larger optical thick-
ness and contributes less to the heat transfer, The radiative heat transfer is thus characterized by
a smaller Lpmb: As the size of A2 (Dx/Dz) increases, Lpmb approaches an asymptotic curve, inde-
pendent Dx: This behavior can again be attributed to lower contribution to the total heat transfer

Figure 3. Comparison between the exact and approximate exchange factor generated by OPMBL and the error of the
approximation.
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from the optically thick outer portion of A2, which also has a lower exchange factor. Indeed, he
exchange factor, view factor and Lpmb thus all approach an asymptotic limit as the size of the
absorbing area, A2, increases.

Using the OPMBL, an approximation to the exchange factor can be written as

ds1s2
dA1

� �
approx:

¼ Fd1�2e
�aLopmb (14)

A comparison between Eq. (14) and the actual exchange factor is presented in Figure 6. The
agreement is excellent. To further illustrate the error in using Lopmb to evaluate the exchange fac-
tor, a detailed comparison between the exact and approximate value of the exchange factor for a
specific geometry (Dx

Dz
¼ Dy

Dz
¼ 5) is presented in Figure 7. Note that the absolute value of the error

is less than 0.005 for all optical thicknesses. The maximum error occurs in the region around aDz

� 0.3, which yield a percentage error of about 2%. While the percentage error increases signifi-
cantly in the region of large optical thickness (aDz > 2), this eror increase is not important prac-
tically since the value of the exchange factor is small (< 0.01) in this region. OPMBL can thus be
used to predict accurately the exchange factor over all optical thicknesses. The OPMBL for A2

with different dimensions (Dx/Dz, Dy/Dz) are presented in Figure 8. In general, OPMBL increases

Figure 4b. Geometry and coordinate system of the second 3-D fundamental geometry.

Figure 4a. Geometry and coordinate system of the first 3-D fundamental geometry.
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with increasing dimension in the x and y direction. In both direction, OPMBL approachs an
asymptotic limit due to the decreasing contribution of radiative heat transfer from the outer por-
tion of the absorbing surface.

Figure 5. The effect of optical thickness (aDz) and physical dimension (Dx/Dz) on PMBL for the configuration of Figure 4a.

Figure 6. Comparison between the exact value of the exchange factor and the approximation using OPMBL for the configur-
ation of Figure 4a.
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A similar calculation is performed for the geometry as shown in Figure 4b, in which A2 is per-
pendicular to dA1 with a dimension of Dy � Dz at the plane x ¼ Dx: Based on the mathematical
development presented in the appendix, the PMBL for this geomtric configuration is given by

Figure 7. Comparison between the exact and approximate exchange factor generated by the OPMBL and the error of the
approximation for the case with Dx/Dz ¼ Dy/Dz ¼ 5.

Figure 8. OPMBL for different dimensions of A2 for the configuration of Figure 4a.
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e�aLpmb ¼ 1
pFd1�2

ðgy
0

e�aDx

ffiffiffiffiffiffiffi
1þs2

p

1þ s2ð Þ2 s2dsþ gy

ðffiffiffiffiffiffiffiffiffig2yþg2z
p

gy

e�aDx

ffiffiffiffiffiffiffi
1þs2

p

1þ s2ð Þ2 sds

2
664

�
ðffiffiffiffiffiffiffiffiffig2yþg2z

p

gz

e�aDx

ffiffiffiffiffiffiffi
1þs2

p

1þ s2ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � g2z

q
sds

3
775

(15)

with gy ¼ Dy

Dx
, gz ¼ Dz

Dx
and Fd1�2 is the view factor given by

Fd1�2 ¼ 1
2p

tan�1gy �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2z
p tan�1 gyffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2z
p� �" #

(16)

In general, the mathematical behavior of PMBL for the configuration in Figure 4b is similar to
that of Figure 4a. The spectral dependence of PMBL, the existance of an OPMBL which can be
used to accurately approximate the exchange factor over all values of the absorption coefficient,
the small error of the approximation and overall behavior of the OPMBL are presented in
Figures 9, 10, 11 and 12, respectively.

4. Applications

To provide a quantitative assessment on how the concept of PMBL can improve the computa-
tional efficiency of a radiation solver, the OPMBL data generated for the geometric configurations
of Figures 4a and b (as represented by Figures 8 and 12 are implemented to evaluate the

Figure 9. The effect of optical thickness (aDz) and physical dimension (Dx/Dz) on PMBL for the configuration of Figure 4b.
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exchange factor between two finite rectangular areas oriented in the parallel and perpendicular
direction as shown in Figures 13a and b. The total radiative exchange between the two finite sur-
faces is given by

Figure 10. Comparison between the exact value of the exchange factor and the approximation using PMBL for the configuration
of Figure 4b.

Figure 11. Comparison between the exact and approximate exchange factor generated by OPMBL and the error of the approxi-
mation for the case with Dz/Dx ¼ Dy/Dx ¼ 5.
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s1s2 ¼
ð1
0

ð
A1

ð
A2

cos h1 cos h2
pL2

e�akLdA2dA1dk (17)

For a non-gray medium such as a mixture of combustion gas and soot, the spectral integration
can be carried out to yield

s1s2 ¼
ð
A1

ð
A2

cos h1 cos h2
pL2

sg Lð ÞdA2dA1 (18)

Using the concept of OPMBL and the principle of superposition, the integration over A2 can be
written as a finite sum of differential exchange factors between dA1 and finite rectangles with the
geometry of Figures 4a and 4b asð

A2

cos h1 cos h2
pL2

sg Lð ÞdA2 ¼
XN
i¼1

Fd1�2, isg Lopmb, ið Þ (18)

where the number of terms in the summation, N (which is less than or equal to 4), varies
depending on the location of dA1 relative to A2. The total exchange factor is reduced to a single
area integration over A1 as

s1s2 ¼
ð
A1

XN
i¼1

Fd1�2, isg Lpmb, av, ið ÞdA1 (19)

which can be evaluated efficiently.
Two specific examples are presented to illustrate the computational efficiency of the PMBL

approach. In the first example, two parallel squares separated by a vertical distance equal to its
width (X1 ¼ Y1 ¼ 1, X2 ¼ Y2 ¼ 1, DX ¼ DY¼ 0 and DZ¼ 1 in Figure 13a is considered. The
neural network RADNNET [15], which has been established to be an accurate and efficient
approach to determine the 1-D transmission characteristics of a CO2/H2O/soot mixture, is used
to calculate the total transmissivity. Results for some typical values of H2O partial pressure and
soot concentration are presented in Table 1. The PMBL approach, based on Eq. (19), generates

Figure 12. OPMBL for different dimensions of A2 for the configuration of Figure 4b.
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essentially the same value of the exchange factor as the direct integration approach based on
Eq. (17) with a moderate reduction in computational effort (a factor of 3–4). Mathematically, the
evaluation of exchange factor for parallel surfaces converges quickly even with a direct numerical
approach. The improvement by the PMBL approach is thus not too significant.

In the second example, two perpendicular squares with a common edge (X1 ¼ Y1 ¼ 1, Y2 ¼
Z2 ¼ 1, DX ¼ DY ¼ DZ¼ 0 in Figure 13b is considered. The evaluation of the exchange factor
for this geometrical configuration by direct numerical integration is known to require significant
effort because of the mathematical singularity associated with the common edge. This is con-
firmed by results shown in Table 2. The CPU time for an absorbing medium using the direct
integration approach is in the range of 10 to 45 secs. The PMBL approach, on the other hand, is
far superior. It yields results which are within 1% of the direct integration approach and the
required computational effort (CPU time) is similar to that of the first example. Specifically, the
required CPU time in this second example is in the range of 0.1 secs. or less, representing a fac-
tor of 100 to 400 reduction in computational effort. Mathematically, the direct integration
approach needs a fine discretization in both A1 and A2 to account for the contribution of the
region near the common edge to the exchange factor, leading to the excessive computational

Figure 13a. Geometry and coordinate system for SSPP, the evaluation of exchange factor between two parallel rectangles.

Figure 13b. Geometry and coordinate system for SSPD, the evaluation of exchange factor between two perpendicu-
lar rectangles.
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effort. The PMBL approach, on the other hand, requires only discretization of area A1. Since
PMBL approaches an asymptotic constant value as the integration point approaches the common
edge, there is no need for very fine discretization. This accounts for the significant improvement
in the required computational effort for the PMBL approach.

For the general geometry as shown in Figures 13a and 13b, two radiation solvers, RADNNET-
SSPP and RADNNET-SSPD are developed using the PMBL approach. Since they are computa-
tionally efficient, these two solvers can be used in a time-transient calculation for practical engin-
eering applications. They can also be used to generate much needed benchmark solutions for the
further development of computational method for radiative heat transfer. These solvers are made
available for the engineering community from the websites walter-yuen.com/radnnet-sspp and
walter-yuen.com/radnnet-sspd respectively.

5. Conclusion

A new concept of point mean beam length (PMBL) is presented. For a specific geometry, a con-
stant “optimal” point mean beam length is shown to be sufficient to simulate the non-gray effect
of radiative heat transfer. For enclosures with symmetrical geometry, PMBL is identical to the
traditional mean beam length concept. It provides a mathematical justification for the current
empirical approach for the utilization of the mean beam length concept for practical application.
For radiative heat transfer in general multidimensional enclosure, PMBL is shown to be highly
effective in improving the computational efficiency of radiative heat transfer in multidimensional
non-gray media. As illustrations, two radiation solvers using the PMBL are developed and made
available to the engineering community.

References

[1] H. C. Hottel and A. F. Sarofim, Radiative Transfer,” McGraw Hill, New York, 1967.
[2] R. V. Dunkle, “Geometric Mean Beam Length for Radiant Heat Transfer Calculations,” ASME J. Heat

Transfer, vol. 86, no. 1, pp. 75–80, 1964. DOI: 10.1115/1.3687072.
[3] D. B. Olfe, “Mean Beam Length Calculations for Radiation from Non-Transparent Gases,” J. Quant.

Spectroscopy Radiative Transfer, vol. 1, no. 3-4, pp. 169–176, 1961. DOI: 10.1016/0022-4073(61)90022-X.
[4] C. L. Tien and L. S. Wang, “On the Calculation of Mean Beam Length for a Radiating Gas,” J. Quant

Spectroscopy Radiative Heat Transfer, vol. 5, no. 2, pp. 453–456, 1965. DOI: 10.1016/0022-4073(65)90078-6.

Table 1. Comparison of the CPU time requirements for the evaluation of the exchange factor between two parallel squares
with a vertical separation equal to its width (X1 ¼ Y1 ¼ 1, X2 ¼ Y2 ¼ 1, DX ¼ DY¼ 0, and DZ¼ 1 in Figure 10a).

Case Tg ¼ Tw (K) pH2O (kPa) fv s1s2 (Eq. 17) CPU (sec) s1s2(PMBL) (Eq. 19) CPU (PMBL) (sec)

1 1000 0 0 0.1998 1.563E-2 0.1998 1.563E-2
2 1000 0 5E-8 0.1805 3.125E-2 0.1805 3.125E-2
3 1000 0 1E-7 0.1635 4.688E-2 0.1634 1.563E-2
4 1000 30 0 0.1404 1.047 0.1404 0.2500
5 1000 30 5E-8 0.1257 0.8125 0.1257 0.2500
6 1000 30 1E-7 0.1130 0.6719 0.1130 0.2500

Table 2. Comparison of the CPU time requirements for the evaluation of the exchange factor between two perpendicular
squares with a common edge (X1 ¼ Y1 ¼ 1, Y2 ¼ Z2 ¼ 1, DX ¼ DY ¼ DZ¼ 0 in Figure 10b).

Case Tg ¼ Tw (K) pH2O (kPa) fv s1s2 (Eq. 17) CPU (sec) s1s2(PMBL) (Eq. 19) CPU (PMBL) (sec)

1 1000 0 0 0.2000 1.563E-2 0.2000 1.563E-2
2 1000 0 5E-8 0.1901 3.125E-2 0.1909 1.563E-2
3 1000 0 1E-7 0.1811 1.562E-2 0.1824 1.563E-2
4 1000 30 0 0.1615 45.95 0.1630 0.1563
5 1000 30 5E-8 0.1537 10.78 0.1556 0.1250
6 1000 30 1E-7 0.1465 10.51 0.1487 0.1094

14 W. W. YUEN AND W. C. TAM

https://doi.org/10.1115/1.3687072
https://doi.org/10.1016/0022-4073(61)90022-X
https://doi.org/10.1016/0022-4073(65)90078-6


[5] A. T. Wassel and D. K. Edwards, “Mean Beam Length for Spheres and Cylinders,” ASME J. Heat Transfer,
vol. 98, no. 2, pp. 308–309, 1976. DOI: 10.1115/1.3450538.

[6] D. A. Mandell, “Exact and Mean Beam Length Calculations for Radiative Heat Transfer in Gases,”
Combustion Sci. Technol., vol. 9, no. 5-6, pp. 273–276, 1974. DOI: 10.1080/00102207408960365.

[7] D. A. Nelson, “Band Radiation of Isothermal Gases with Diffused Wall Enclosures,” Int. J. Heat Mass
Transfer, vol. 27, no. 10, pp. 1759–1769, 1984. DOI: 10.1016/0017-9310(84)90158-3.

[8] W. W. Yuen, “A Simplified Approach to the Evaluation of Geometric Mean Transmittance and
Absorptance for Gas Enclosures,” ASME J. Heat Transfer, vol. 103, no. 4, pp. 808–813, 1981. November,
DOI: 10.1115/1.3244546.

[9] W. W. Yuen, “Evaluation of Geometric Mean Transmittance and Total Absorptance for Two-Dimensional
Systems,” Int. J. Heat Mass Transfer, vol. 25, no. 7, pp. 1069–1071, 1982. DOI: 10.1016/0017-
9310(82)90083-7.

[10] W. W. Yuen, “Definition and Evaluation of Mean Beam Length for Applications in Multi-Dimensional
Radiative Heat Transfer, a Mathematically Self-Consistent Approach,” ASME J. Heat Transfer, vol. 130, no.
11, pp. 114507, 2008. DOI: 10.1115/1.2969752.

[11] W. W. Yuen, “On the Utilization of the Mean Beam Length Concept in the Evaluation of Radiative Heat
Transfer in Isothermal Three-Dimensional Non-Gray Systems,” Int. J. Heat Mass Transfer, vol. 84, pp.
809–820, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.080.

[12] W. C. Tam, “Analysis of Heat Transfer in a Building Structure Accounting for the Realistic Effect of
Thermal Radiation Heat Transfer,” Ph.D. Thesis, The Hong Kong Polytechnic University, 2013.

[13] W. W. Jones, R. D. Peacock, G. P. Forney and P. A. Reneke, “CFAST: Consolidated Model of Fire Growth
and Smoke Transport (Version 5), Technical Reference Guide,” NIST-SP-1030, National Institute of
Standard and Technology, October, 2004.

[14] K. McGrattan, S. Hostikka, J. Floyd, H. Baum and R. Rehm, “Fire Dynamics Simulator (Version 5),
Technical Reference Guide,” NIST Special Publication 1018-5, National Institute of Standard and
Technology, October 1, 2007.

[15] W. W. Yuen, “RAD-NNET, a Neural Network Based Correlation Developed for a Realistic Simulation of
the Non-gray Radiative Heat Transfer Effect in Three-dimensional Gas-particle Mixtures,” Int. J. Heat Mass
Transfer, vol. 52, no. 13-14, pp. 3159–3168, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.01.041.

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 15

https://doi.org/10.1115/1.3450538
https://doi.org/10.1080/00102207408960365
https://doi.org/10.1016/0017-9310(84)90158-3
https://doi.org/10.1115/1.3244546
https://doi.org/10.1016/0017-9310(82)90083-7
https://doi.org/10.1016/0017-9310(82)90083-7
https://doi.org/10.1115/1.2969752
https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.080
https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.041


Appendix

For the geometry as shown in Figure 4a, the exchange factor between dA1 and A2 is given by

ds1s2
dA1

¼ 1
p

ð ð
e�arD2

z

r4
dA2 (A1)

with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ D2

z

p
dA2 ¼ dxdy: In terms of a polar coordinate on the x-y plane (dA2 ¼ sdsd/), Eq. (A1) can

be written as

ds1s2
dA1

¼
ðffiffiffiffiffiffiffiffiffiffiffiD2
xþD2

y

p

0

ð/max sð Þ

/min sð Þ

e�arD2
z

pr4
sdsd/

¼
ðffiffiffiffiffiffiffiffiffiffiffiD2
xþD2

y

p

0

/max sð Þ � /min sð Þ½ � e
�arD2

z

pr4
sds (A2)

with s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: The two angular limit of integration, /min sð Þ and /max sð Þ for three separate range of s can be

determined geometrical as shown in Figures A1. Eq. (A2) is reduced to three separate terms as follow

Figure A1. Angular limits for the integration in Eq. (A2).
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¼ 1
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(A3)

Eq. (A3) can be further simplified to yield

ds1s2
dA1

¼ 1
2

E3 aDzð Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2y þ 1

q
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s
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which is the basis of Eq. (12). Note that eventhough the identification of the angular limits of integration, as
shown in Figure A1 is based on the assmuption of Dx < Dy, Eq. (A4) is general and applicable for all values of
ðDx, DyÞ: In the optically thin limit (aDz ! 0), Eq. (A4) can be integrated to yield the view factor expression
shown in Eq. (13).

For the configuration of Figure 4b, the exchange factor is given by

ds1s2
dA1

¼ 1
p

ð ð
e�arDxz

r4
dA2 (A5)

with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þ y2 þ z2þp
dA2 ¼ dydz: Similar to Eq. (A2), Eq. (A5) is expressed In terms of a polar coordinate

on the y-z plane (dA2 ¼ sdsd/) as
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(A6)

with s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
: The angular limits of the integration is similar to those presented in Figure A1 with the substi-

tution of Dx ! Dz: Eq. (A6) is reduced to three separate integrals as
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After non-dimensionalization, Eq. (A7) is reduced to
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¼ 1
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which is the basis of Eq. (15). Similar to Eq. (A4), Eq. (A8) is general and applicable for all values of ðDy, DzÞ: In
the optically thin limit (aDx ! 0), Eq. (A8) can be integrated to yield the view factor expression shown in
Eq. (16).
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