Application of the P-1
Approxnnatmn to Radiative
Heat Transfer in a Nongray
Medium

W. W. Yuen? and D. J. Rasky?

Nomenclature .
au. = absorption coefficient at wavenumber w
= Planck’s mean absorption coefficient
,w(: =0, 1,2, 3) = expansion coeffments defined by equation (5)
d = spectral line spacing
epe = blackbody emissive power
epp1 = blackbody emissive power evaluated at Th
ez = blackbody emissive power evaluated at T2
epwo = blackbody emissive power evaluated atz = 0
5:.:.!0 = ae(’)l.u/az (z = 0)
ep1; = blackbody emissive power evaluated at w; and /o
epz; = hlackbody emissive power evaluated at w; and T2
es0; = blackbody emissive power evaluated at w; and z =
ellli = depu/oz (z = 0,w = wi)
F;() = integral of Fa, over the ith band '
Fiw = function defined by equation (8)
G;®) = integral of G, over the ith band
G = function defined by equation (9}
iy = radiative mtenmty ™
Lty = T
byt = esun/T
ibw2 = b/ T
L = separation between two plates for the one-dimensional system
Ly =au,L - .
g = radiative heat flux .-
@ = heat generation rate -
S = mean line intensity :
Ty = temperature of the lower boundary
Ty = temperature of the upper boundary
z = coordinate
v = line half-width
p=z/L

" p = cosf

w = wavenumber -
p = density of gas
Vn.w = spherical harmonic 2-moment

1 Introduction

Interest in predicting the heat transfer rate through an absorbing
emitting medium has been increasing as more problems with high
temperature have arisen. But realistic solutions to these problems,
even in a very simple geometric system, are difficult to obtain because
of the frequency and temperature dependent radiation properties
of the medium.

In the present work the P-1 appmmmatmn method, which has been
demonstrated [1] to be effective in generating accurate approximate
solutions to the gray problem, will be generalized for nongray prob-
lems. In contrast to most of the existing approaches [2-4], the present
method has the advantage that all solutions will be formulated in
terms of the spectral absorption coefficient. The method is thus ap-
plicable for al! media including those for which correlations of total
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band absorptance are not available. For gases, the present technique .

will be demonstrated to be superior. Even for situations in which the
simulianeous effects of all absorption bands are constdered only
simple iterations are requxred for its solution. '

2 Mathematical Formulation

‘The mathematical development for the P-1 approximation is well

known. In essence, the transfer equation and the energy equation are
combined to yield

where Yo, and 1, are the zeroth and first moment of the spectral .

5 .
2V awlow = 40,880 03]
oz

3 -
Qo o Bauine = @
oz

intensity function at wavenumber w, 2. the absorption coefficient,
epg the blackbody emission power, and z the coordinate. The energy
equation becomes

d = ‘ .
= S udv=9 @ -

with @ being the internal heat generation rate. As in the gray analysis,.
the intensity boundary conditions are replaced by Marshak’s
boundary condition. Only two of such conditions are required for .
the P-1 approximation. They are
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where = cosf, igw1 = Fow(T1), itwe = inw(T2). In the above equations, ..

the two plates are assumed to be at temperature 7' and T3 and located )

atz = —L/2 and z = L/2, respectively.

Despite their apparent simplicity, equations {1-4) are still difficult -
to solve exactly. A simple approximate solution, however, can be '
generated by assuming that the average intensity function, Yo 15

Substituting equation (5) into equation (2}, a similar polynomial ex- -

. given by

-1, ) L . o
bopdp = —2—lbw2 atz=— {4) :

S

\I’O,w- = AOw + Aoz + A21u22 + ASwZB } (5)

pression for 1,y can be generated. Utilizing equation (4) and requiring
that coefficients for the zeroth and first power of z on both sides of -
equation (1) to be equal, solutions for the four expansion coefficients -
can be obtained. Utilizing the above expressions, equations (2) and

sult:

- _ -
j [G2w(ebw1 - ebwé) + (G2w + galw) ebwo(nL] dw=0 (¥ )

where eppp = 2hw (2 = 0) and epuo™ = dep,/0z (2 = 0). In the abave -
equations, Fx,, and Gy, are functlons defined as

with L, = a,, L. For a given nongray medium with a known absorption
coefficient a,,, equation {8) can be readily solved iteratively to yield
the unknown ceriterpoint temperature T(z = 0). Equation (7) can be- '
similarly solved to generate dT/dz (z = 0). These results can be used

Grw =

6L, *

gt (s')__’

1+ Ly +3L,%/8

32L,*% .
Le® + 4L,2 + 8L, -+ 32/3

©

(3) and assummg that @ = constant the following equatlons re- .

el

£, Frofesun + eous = 2epucldw=~3QL -~ @

t6 determine the unknown expansion coefficients and subsequently .

the temperature profile and heat transfer. It is interesting to note that
in the limit of a gray medium (a.. = const.), solutions to equations 6

and {7) correspond exactly to the traditional diffusion approxima-

tion.
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3 Analytical Solution
Surprisingly, direct information on ay, for the different common
absorbing gases (COg, Hs0, etc.) is scarce. Because of its highly ir-
regular and complex behavior, most of the existing spectroscopic data
on gaseous ahsorption are presented in terms of the correlation pa-
rameters for the wide-band total-absorptance model [5]. To generate
an expression for a,, which is needed for the I'-1 approximation, the
present work proposes to utilize these data indirectly. Based on the
- Elsassar “narrow band” expression for a,, and evaluating at the center
of the narrow band, the present work assumes that the absorption
coafficient is given by ' '
- (ﬁ) sinh [2xy/d)
'.” ' cosh [2xy/d] ~ 1

where p is the gas density, S/d the mean-line-intensity-to-spacing
ratic and v/d is the line-width-to-spacing ratio for the considered
narrow band. Over a wide band, it can be shown that S/d is a function
of wave number and ~y/d a function of temperature and pressure, They
are tebulated for the various gases in reference fs]- :

* Equations (8) and (7) ean be further simplified by assuming that
the blackbody emissive power ey, varies only slowly over the range
of w at which Fy,, and Gy, are significantly different from zero.
Treating e, as & constant in the integration, equations (6) and (7)
become )

3 (10}

3 Fi® (egyi + eba — 2esor) = ~3GL

(6a)

-n 4
L (G (ep1i — epai) + epoi VL (G:'(2) + gGim)] =0 (7a)
i=1 o .

where the subscript { stands for evaluation at the center for the head)

of the fth band w; and F;®), G;™® are integrals of the function Fy, and

G over the ith band, It is interesting to note that utilizing equation

{10), £;%) and G;*) can be evaluated in closed-form for all values of

k. ‘ :

Even without explicit numerieal computations, a number of in-

teresting analytical expressions can be readily generated. For the case

with equal wall temperature (7} = T5) and nonzero heat generation
(@ 5 0), assuming that the blackbody emissive power can be ap-
proxiraated by the following linearization

] dep;) ‘ ‘
i = PRl To— 14
250i = €p), . dT)T; (To—Tv) (14)
equation (10a) yields l ! -
.oto8
, ) 3 QL _
- T[) = T] + " d . . (15)
R (&] :
- i§1 bovdTn
n the optically thin limit, equation (21} is reduced to
L
To=T1 + Q y . (18)°
n ey . .
4 Col-—| |
:‘gl {T .B(dT)TtL

there v = pL(C1/Cy) sinh (27r'y/d)/(cosh {27y/d) = 1), and Cy, C5
he wide-band correlation constants tabulated in reference [5).
iquation (16) is the correct optically thin limiting expression for To
s discussed in reference [3]. In the large path-length limit (pL —
wge), equation (15) is reduced to ’
: oL
dey

G'QFS i§1 [Cs(ﬁ) T,L

CTo=Ti4 amn

xcept for a simple numerical factor, equation (23) is again identical

1 the corresponding expression developed in reference [3]. (The
1merical value 6.95 is replaced by 27 in that reference.)

For the case with unequal wall temperatures (7' »¢ Ts) and zero
:at generation (@ = 0), the overall heat transfer is the more inter-
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esting physical quantity. Utilizing equations {6-9} and the definition
of heat flux, it can be shown that in the large pathlength limit
I . '
g+ Ty~ gTyt - Z: {ep1i — evai)(ln7); (18)
g .
Since 1n7 is the large pathlength limit of the wide-band total gas
absorptance, equation (18) suggests that in that limit the different
bands absorb independently and their effects add linearly to yield the
total attenuation. Since the contribution due to the different bands
can be quite substantial, the above expression also {llustrates that
calculations in which only one absorption band is considered can Jead
to significant error in the heat flux prediction at the large pathlength
Bmit. :
4 Numerical Results and Discussion
To demonstrate quantitatively the effectiveness and the aceuracy
of the present method, solutions with CO, as the absorbing medium
are now geherated, Assuming that @ = 0 and the only relevant ab-
sorption band is the 4.3 it bang, solution to equations (10a) and (10b)
yield the following expressions for the heat flux and the temperature
distribution '

1 1
qg= UT14 - Cl'rfl - (eblc = eb2c)[§'2" Gc 2 + g Gc @ + Z Gc ﬂ)]

G, 4 4G, |
c (4 (19)

+leve — G0 [ OCH 40 T
[ ble n2e) c' 24Gc(2)+ 32Gc(1)
eoe(z) meppe 1 1 [Gc @+ g, (4),,3}
es1e —€pze -2 4ApL 2

G [Gc “)(n — d93) + 4G, @y - 1_36. G, (2),?3]

= 2
44,L [8G.D -+ 32/3G, 0], (20)

Table 1 Comparison of the dimensionless heat flux '
(a/ o T2*) for two typical cases obtained from the
present Py approximation and those obtained from

. other techniques
Casel Case 2

Wide-band Curtis-Godson 185.029 189,481

method
Hottel's method 195.038 189.491
Method based on isothermal 194.887 189.727

band absorption .
P, approximation 194.1 189.2

Case 1: T, 1500 K, T = 400 K, FPeo, = 0.2 atm, Py, = 102tm, L = 1 ¢m.
Case 2: T = 1500 K, T2 = 400 K, Peo, = 1.0atm, Py, = 0, L = 10 cm.
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- use of well established analytic solutions [1-3]. However, experi-

In the ehove expression, 5 = 2/L; the subseript ¢ implies properties
evaluated at the head of the 4.3 p band and Ap, = 1/L [ a0l dwis
the Planck mean absorption coefficient.

Assuming that T1 = 1600 K and T, = 400 K, and evaluating a.q*
the average tempaerature, the heat flux calculated from equation (19}
for two specific cases and those obtained from other technigues [2]
are compared in Table 1. The agreement is excellent. The accuracy
of the temperature profile result is illustrated in Fig. 1. It is important
to note that the present mathematical development represents at Jeast
a ten-fold reduction in complex1ty comparmg to all of the specific
existing techmques
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The Effécts of Nonuniform Heat
Transfer from an Annular Fin of
Triangular Profile-

P. J. Heggs,' D. B. Ingham and M. Manzoor®

Nomenclature
= (hy 4 h:}/2, average heat transfer coefficient

hb = heat transfer coefficient at fin-base

h: = heat transfer coefficient at fin-tip

k = thermal conductivity

r = radial distance from tube axis

rp = radius of fin-hase

e = radius of fin-tip

¢t = half thickness of fin-base

x = (r; — r)/L, dimensionless distance from fin-tip
= ht/k, Biot number ~7

. ) H nonuniform heat transfer .coefficlent oL

L = fin length
M = (L/t)? Bi/cos &, dimensionless
N = 2(1 + {), dimensionless
R = r;/L, dimensionless
Ty = temperature of fin-base
T. = teraperature of fluid
o = tan~1(¢/L)
€ = hyp/h,, dimensionless
= (T = To)/(Ty — T}, dimensionless temperature
£ = (1 - ), dimensionless

Introduction
Finned surfaces are presently desng‘xed on the basis that the heat
transfer coefficient is uniform over the fin surface as this permits the

mental investigations indicate that the heat transfer coefficient Is not
invariant [4-8). In particular, for the annular geometry the heat

" t{ransfer coefficient varies hoth radially and angularly over the fin

surface (Wong [4]). _

Analytic investigation of the effects of nonuniform heat transfer
involve the use of assurned variation of the heat transfer coefficient,
e.g., Han and Lefkowitz [7] employ heat transfer coefficients which
vary as given powers of the displacement from the fin-base.

In this note the analytic sclution for the temperature distribution
within an annular triangular fin (Fig. 1) with linearly varying heat
transfer coefficient is derived, and the corresponding fin efficiency
is compeared with experimental results. -
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Analysis

In the following analysis it is assumed that the thermal conductmty
of the fin material, &, is constant and the heat transfer coefficient, H,
varies linearly from hy at the fin-base to h: at the fin-tip, f.e,,

nh—r .
) (1
ry~17p

H(ry= 1-1-9

2h
{1+¢

where h is the average value of H and e is the ratio of the heat transfer .

coefficient at the fin-base to that at the fin-tip.

For steady-state, one-dimensional conductive heat flow, an energy ‘

balance over an element of the fin, gives
d d H

g - ¢=0
dr( dr ) k cosrxr @

where the fin proﬁle is described by

yr)=— (r: —r)

The inclusion of the exact representation for the incremental sur-
face avea, (2wr dr/cos o}, does not complicate the solution procedure,
and has the advantage that the solution will be valid, even for small
fin length to fin-base thickness ratios. This has particular significance
as Lau and Tan {8] have recently shown, for a variety of fins, that the
applicability of the one-dimensional approximation does not require
the fin length to be large in comparison to the relevant transverse
dimension.

The temperature distribution, and hence the heat transfer rate of _
the fin, are determined by solvmg equataon {2) subject to the condi- .

tions

i atr=rp0=1 . : : (&)

Flg. 1 The annular iin ol triangular profile
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