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Non-Fourier Heat Conduction in a Semi-infinite Solid
Subjected to Oscillatory Surface Thermal Disturbances

W. W. Yuen! and 8. C. Lee?

1 Introduction

Many investigators have explored the effect of non-Fourier
conduction in transient heat transfer processes in recent years
(Brazel and Nolan, 1966; Maurer and Thompson, 1973;
Kazimi and Erdman, 1975; Luikov, 1968; Wiggert, 1977;
Glass et al., 1985). Based on a relaxation model for heat con-
duction in solids and ligquids, the traditional heat diffusion
equation is replaced with a hyperbolic equation that accounts
for the finite thermal propagation speed. The use of the hyper-
bolic equation removes the nonphysical phenomenon of the
diffusion equation analysis that predicts instantaneous
temperature disturbances at all points in the medium for a step
heat flux at the boundary. It further removes the peculiarity of
an infinite temperature gradient at the boundary as time goes
to zero.

The hyperbolic equation has been used in a number of
analyses. Sclutions generated by thesc studies show that the
non-Fourier effect is important only at very early times in
transient heat transfer processes, such as the high-intensity
electromagnetic irradiation of a solid (Brazel and Nolan,

11966), the sudden contact of two hot molten liquids such as
furanium dioxide and sodium (Kazimi and Erdman, 1975), and
ithe high-rate heat transfer in rarefied media (Luikov, 1968). In
Igeneral, the non-Fourier effect is shown to decay quickly, and
the conventional Fourier equation is accurate a short time
after the initial transient.

The objective of this work is to show that the non-Fourier
conduction effect can be important even at a ‘‘long time"’
after the initial transient if the thermal disturbance is
oscillatory with the period of oscillation of the same order of
magnitude as the thermal relaxation time. In particular, the
thermal response of a semi-infinite solid subjected to a
sinusoidal boundary heat flux condition is generated. The
present solution illustrates readily that, in many practical
situations such as the repeated irradiation of a solid by a laser
with very short pulse width, heat transfer analyses using the
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traditional Fourier heat diffusion equation can result i
significant errors. The current results also suggest that the
thermal relaxation time of a solid can be determined by
measuring the thermal response of the solid irradiated by a
high-frequency heat flux, .

2 Analysis

In one-dimensional flow of heat, the energy equation is
given by
ar dg
C— + —/— =0
YT T e M
where p is the solid density, C is the specific heat, T is the
temperature, g is the heat flux, and x, ¢ are the distance and
time coordinates, respcctively. The modified Fourier equa-
tion, as utilized in previous investigations (e.g., Brazel and
Nolan, 1966), is
0y aT
— i tg+k—— =0
T q dax @
where £ is the thermal conductivity and r is defined as the ther-
mal relaxation time which, for many solids, is on the order of
1012 to 1014 s (Weyman, 1967). Equations (1) and (2) can be
combined to form the following dissipative wave equation:
T N orT T o)
o T e ad
For a one-dimensional semi-infinite solid subjected to a
sinusoidal surface heat flux boundary condition, the boundary
and initial conditions arc given by

gD, ) = goe™
T(e t) =0 )
q(m, f) =0
and
Tix, 00 =0
. T 5
gy, 0 =0

where i=(-1}"?; g, and @ are amplitude and frequency of
the surface heat flux oscillation, respectively. Note the initial
temperature is normalized to be zero in the above equation.
The sinusoidal 'surface heat flux is expressed as a complex
number for mathematical convenience,

~ The solution to equation (3) can be readily generated by the
Laplace transform. Taking the Laplace transform of equa-
tions (2) and (3) vields

(A +75)g(x, s)=—k—fr1 {x, 5) (6)
dx
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-where ¢ and T are the Laplace transforms of T, respectively.

When equation (6) is evaluated at x = 0, the boundary condi-
tions become

dTi0, s) __( l-!-‘rs)ﬂ
dx s—iw / k
T(»,5) =0 ®)
q(»,s) =0

'I_‘he solution to equation (7) subjected to the boundary condi-
tions as represented by equation (8) is

= Soen’? (s+ /92
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= (7)
T
is the thermal propagation speed. The inverse transform of
equation (9) is
T(x, 1)
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where H(¢) is the Heaviside unit step function and Ty (x}is the
modified Bessel function of zero order.

3 Resulis and Discussion

(a) Temperature at x=at. The presence of the Heaviside
function H(¢) in equation (10} illustrates that due to the finite
speed of propagation of the thermal disturbance, the
temperature in the solid remains at zero for x>af. At x=at,
the temperature is independent of w and has a step discontinui-
ty given by

T(at, t) —trm
Wl = o

At =0, the above equation yields the surface temperature as
T(0, 0)
golan)'2/k

which is identical to results derived in Maurer and Thompson
(1973) and Wiggert (1977). Equation (11) suggests that in the
limit of short time (on the order of the thermal relaxation
time), the temperature at x = at is significantly higher than that
predicted by the conventional Fourier analysis. At a sufficient-
ly high heat flux level, this result has important implications in
the failure of structural integrity due to thermal shock.

=1

(b) ‘*Steady-State’’ Resuits. In the limit of long time
(¢— ), the integral in equation (10} can be evaluated in closed
form. The temperature profile can be written analytically as

T(X,!) = (1 +w272)“4 ei(ur+1)—(i+1)x+x—(i—l)x_x (12)
golar2/k (wr)1?
where
1 w 1/2
Ky = T[——-—- ((l+cu272)”7'+1):| (13a)
o
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and
1 T .
= rr— ~1 —_—— 14
> tan™ ‘wr ) (14)

In the limit of 7—0, equation (12) is reduced to

itut=m78)= (i + Diw/2e) 2y

K(-=) N (15)

which is identical to the result generated by conventional
Fourier conduction analysis as given in Carslaw and Jaeger
(1580).
Physically, equation (12) represents a decaying temperature
wave of wavelength \ given by
)\021/2

A= [(1 +w272)l/2 + 111/2 + [(1 +w272)1/2 - 1]1/2 (16)

where

T{x, )=

Ao = Ar
*” (w/2a)'2
is the wavelength of the temperature wave calculated by the
conventional Fourier conduction (r=0) analysis.

Equation (12) also shows that the amplitude of the
temperature oscillation diminishes as e=*/£ where

(17)

Ly212 .
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ey 172
L= (=) (1)
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Physically, L can be interpreted as a ‘‘steady-state’” penetra-
tion depth for the surface thermal disturbance, while L, is the
distance predicted by the,conventional Fourier analysis.

In addition to the wavelength and penetration depth of the
temperature wave, the non-Fourier prediction of the actual
amplitude of the temperature oscillation is also significantly
different from the Fourier prediction, Evaluating at x=0, it
can be readily shown from equation (12) that the dimen-
sionless surface temperature is given by

7,

= gttt 20
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Fig. 1 Eifect of non-Fourler conduction on the amplitude A/Aq,
penetration depth L/L,;, and wavelength \lAg of the temperature
response to a sinusoidal surface heat flux for steady state
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1 = DIMENSIONLESS SURFACE FLUX
2 = DIMENSIONLESS SURFACE TEMPERATURE (Fourier result)
3 = DIMENSIONLESS SURFACE TEMPERATURE (non-Fourier result)

Flg. 2 Transient surface temperature behavior for wr=0.1
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1 = DIMENSIONLESS HEAT FLUX
2 = DIMENSIONLESS SURFACE TEMPERATURE (Fourier result)
3 = DIMENSIONLESS SURFACE TEMPERATURE (non-Fourier result)

Fig. 3 Translent surface temperature behavior for wr=0.5
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The corresponding surface temperature predicted by the
Fourier analysis, on the other hand, is given by Glass et al.

(1985)
(0, t)

v P g aflet— /)
dolany 7k 0

(22)
with
Ap=(wr)~ 12 (23)

It must be reiterated that equations (20) and (22) are for large
L.

Plots of A/xg, L/Ly, and A/A, against wr are shown in Fig.
1. It is readily observed that the non-Fourier effect decreases
the wavelength but increases the amplitude and penetration
depth of the ‘‘steady-state’’ temperature wave, The effect is
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1 = DIMENSIONLESS SURFACE FLUX
2 = DIMENSIONLESS SURFACE TEMPERATURE (Fourier result)
3 = DIMENSIONLESS SURFACE TEMPERATURE (non-Fourier result)

Fig. 4 Translent surface temperature behavior for wr=1.0
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1 = DIMENSIONLESS SURFACE FLUX
2 = DIMENSIONLESS SURFACE TEMPERATURE (Fourier result)
3 = DIMENSIONLESS SURFACE TEMPERATURE {non-Fourier result)

Fig. 5 Transient surface temperature behavior for wur=5.0

significant when the period of oscillation 1/ is less than or
equal to the relaxation time constant 7. The non-Fourier effect
thus has a “long time” permanent influence on the
temperature response of a solid subjected to a high-frequency
surface thermal disturbance.

It is noted that the product of the wavelength and penetra-
tion depth of the ‘‘steady-state’® temperature wave is identical
for both the Fourier and non-Fourier analysis. Specifically,
the product varies inversely with the frequency of oscillation
as

4o

)\L = XoLo = - (24)
®

In the limit of large frequency w—oe, the non-Fourier
wavelength becomes

Ma— o) = —f% (an)2 (25)
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while the non-Fourier penetration depth is given by
L{ts—c0)=2(ar)1? (26)

The corresponding Fourier penetration depth L,, on the other
hand, approaches zero as w—oo.

{c) General Transient Temperature Behavior. The surface
temperature T(0, ) for 0<¢/r< 10 with different values of wr
(0.1, 0.5, 1.0, 5.0} was calculated based on equation (8) and
pre§ented in Figs. 2-5. The surface heat flux is assumed to be
cosine varying. The corresponding Fourier prediction and
dimensionless surface heat flux are plotted on the same figures
for comparison. It should be pointed out that the surface heat
flux g, is regarded as negative when g is negative. The negative
temperature is due to the normalization by g,.

_For the case of small wr, y approaches 7/4 and the phase
difference between the Fourier and non-Fourier diminishes.
The non-l_?ourier effect appears only when t/7 is small, and the
non-Fourier temperature profile becomes identical to the
Foum‘er result when #/7=10. This transient temperature
behavior is consistent with the predictions of the previous
works (¢.g., Brazel and Nolan, 1966). For cases with moderate
and large values of wr, however, the non-Fourier surface
temperature differs significantly from the Fourier result for all
values of ¢/7. In the limit of large wr, ¥ appraoches zero and
the non-Fourier surface temperature oscillates in phase with
the surface heat flux. The Fourier surface temperature, on the
ﬁf)lther hand, has a phase shift of 7/4 relative to the surface heat

ux.

4 Conclusion

The non-Fourier thermal response of a solid subjected to an
oscillatory surface heat flux has been considered in this paper.
This corresponds to the practical situation of irradiation of a
solid by a pulsed laser. Results show that, for moderate and
large values of the oscillation frequency, the non-Fourier ef-
fect is quite significant. In contrast to many existing results,
the non-Fourier effect is demonstrated to be important even
for ‘‘long times” after the initial transient. Conventional
Fourier conduction analysis is shown to underestimate the
steady-state penetration depth of the thermal disturbance and
overestimate the wavelength of the temperature propagation.
In practical calculations that involve high-frequency surface
thermal disturbances, such as the irradiation of a solid by a
pulsed laser, an accurate thermal analysis should, therefore,
include the non-Fourier effect. Results of the present work
also suggest that measurement of the relative phase shift be-
tween the surface temperature and the applied heat flux would
be an effective way to determine the thermal relaxation time of
a solid.
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1-2 N Shell-and-Tube Exchanger Effectiveness:
a Simplified Kraus-Kern Equation

B. S. Bagclic!

Nomenclature

A = exchanger total heat transfer area
on one side, m?
= heat capacity rate = We,, W/K
¢, = specific heat at constant pressure,
J/(kg K)

N,, = number of heat transfer units based
on the tube-side heat capacity rate
= UA/C,

P = temperature effectiveness of the
tube-side stream = (T,,—~T,;) /
(T —Ty)

R = heat capacity rate ratio =C,/C;

T = fluid temperature, °C

I = overall heat transfer coefficient,
W/(m? K)

W = fluid mass flow rate, kg/s

Subscripts

i = inlet to the exchanger

o = outlet to the exchanger

s = shell side

t = tube side

Kraus and Kern {1965) derived the following P-N,-R rela-
tion for the heat exchangers with one shejl pass and any even
number n of tube passes:

P=2/[1 +.R+-—2—x coth(xN,,/n) +if(z)] (1)
n n
where
x=({1+n2R¥/4)2 (2)
z=exp(2N,,/n) (3)

S(z)=(mz™ + (m=2)z" ' +(m—-4)z" "2+, .,
(M-t —(m-z—m)/(1+z+22+2+.. . +2™) (4)

-2 1 5
m—_i_ (5)

Using a simple relation for the sum of a geometric progres-
sion Dodd (1982) derived a more convenient expression for

fzy
_m(z" -~ (m+2z(z" - 1)
F@ = - ©

This note is aimed at firther simplification of the
Kraus-Kern formula. It is sufficient to denote the even
numbers

n=2N, N=12,... )
so that equation (3) becomes
z=exp{Ny/N) )
and Dodd’s expression, equation (6), yields
N+l g+l
=N ——————
S@=N—g==——5 ©
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