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Abstract. A Monte Carlo approach is developed for the layout design of thermal fire detection
system. In contrast to the traditional deterministic approach, the present approach yields not only
a specific design for a given objective, but also a probabilistic assessment of the effectiveness
of the design which can be used as a basis of comparison for different possible designs. The
approach also allows a systematic assessment of the uncertainty in the design process and
provides a rational basis for possible design improvements.
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1. Introduction

Fire detection system is required to be installed in a wide range of buildings. Basically,
requirements of the systems are described clearly in the prescriptive codes [4]. For numerous
reasons such as reducing the false alarm rate [11], thermal detectors are selected. For some
projects with new architectural features [5] or special use of the buildings, prescriptive fire
codes might not be applicable. Engineering performance-based fire codes (EPBFC) [3, 6,
7, 14] is therefore adopted. There had been numerous arguments in the layout of detector.
Cost is not the only issue, architectural features and constants due to structural members
in big projects such as large shopping malls are more important. In applying EPBFC for
designing thermal detection system, thermal response of the detectors [8, 10] should be
considered.

There are many studies on the response of heat detectors to fire-driven flows in the last
years [1, 2, 9, 12, 15]. Based on correlations of experimental data and physical modeling,
methodologies and concepts have been developed and accepted, in general, by the fire
protection community as the basis for design and evaluation of thermal detection system.
For a given design objective and detector’s characteristics, a standard procedure is now
available [13] for calculating the required spacing of ceiling-mounted thermal detectors, if
prescriptive codes are not followed.

The proposed design procedure [13] for thermal fire detection system, however, is deter-
ministic. Assessment of uncertainty is not yet provided. For example, there are uncertainties
associated with the detector’s characteristics. The fire growth rate assumed in the design fire
is also uncertain, and this can have a significant impact on the design spacing. Subjective
decisions in providing the appropriate conservatism in the design must be made by fire
engineers themselves to minimize fire risk associated with such uncertainties.



94 Fire Technology Second Quarter 2005

The objective of the present work is to develop a probabilistic approach in the design of
thermal fire detection system. The Monte Carlo sampling technique [17] would be used.
This approach generates not only a specific design for a given design objective, but also a
statistical assessment of the effectiveness of the design. The uncertainties associated with
the fire growth rate and detector’s characteristics can also be included in the design and
the statistical assessment. This approach is flexible and can be adapted to include specific
building characteristics in the development of the design.

Basic theoretical model used in the current deterministic design of thermal fire detection
system model is described in Section 2. For the same design objective, results generated
by the deterministic approach and the Monte Carlo approach, accounting only for the
uncertainty in the fire location, are presented and compared in Section 3. The effect of
uncertainties in fire growth rate and building geometry on the design result is assessed by
the current Monte Carlo approach in Section 4. Finally, some conclusions on the current
approach and some perspectives on its role in the development of engineering performance-
based fire codes are presented in Section 5.

2. The Current Thermal Fire Detector Model

The current model is based on the work of Heskestad and Delichatisios [9] on a set of
functional relations for the temperature and velocity of fire gases in a ceiling jet. Specifically,
the heat release rate Q̇ (in kW) of the fire is assumed to grow with time t(in s) according to
a power-law relationship as follows:

Q̇ = αt p (1)

where α is a constant for a particular fuel, and p is a positive exponent. To characterize the
difference between fuels, a concept of “critical time”, tc (in s), is introduced to describe the
fire intensity. tc is defined as the time at which a power-law fire would reach a heat release
rate of 1055 kW. In term of tc, Equation (1) becomes

Q̇ = (
1055

/
t p
c

)
t p (1a)

For a flat ceiling of height H above the fire, the temperature rise �T (in ◦C) and velocity
U (in s) of fire gases at a horizontal distance r (in m) away from the fire are given in
dimensionless form as the reduced gas temperature �T ∗

p and reduced gas velocity U ∗
p

respectively by

�T ∗ = �T/
[
A2/(3+p)(Ta/g)α2/(3+p) H (p−5)/(3+p)

] = g(t∗
p, r/H ) (2)

u∗
p = u/

[
A1/(3+p)α1/(3+p) H (p−1)/(3+p)

] = f (t∗
p, r/H ) (3)

where

�T = T − Ta (4)

and the reduced time t∗
p is:

t∗
p = t/

[
A−1/(3+p)α−1/(3+p) H 4/(3+p)

]
(5)
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and

A = g/(C pTaρ0) (6)

In the above equations, Ta is the initial ambient temperature of the room prior to the start
of the fire, g is the gravitational constant, C p and ρ0 are the specific heat and density of air
at the ambient condition respectively.

For t2-fires whose release rate vary according to the power relation with p = 2, Heskestad
and Delichatsios [9] developed the following specific relations for �T ∗

2

�T ∗
2






0 t∗
2 > (t∗

2 ) f
[

t∗
2 − 0.954(1 + r/H )

0.188 + 0.313r

]4/3

t∗
2 > (t∗

2 ) f

(7)

where

(t∗
2 ) f = 0.954(1 + r/H ) (8)

The dimensionless gas velocity for t2-fires (p = 2) was determined to be

u∗
2

(�T ∗
2 )1/2

=
{

3.87/(9.115)1/2 r/H ≤ 0.3

0.59(r/H )−0.63 r/H > 0.3
(9)

The expression for the velocity with r/H of 0.3 is based on work by Zukoski et al. [18].
The above expressions for ceiling gas temperature and velocity can be substituted into

the heat transfer equation for the temperature of the thermal sensing element of the detector
Td (t) at and integrated. Using the condition that the initial temperature of the thermal sensing
element of this detector is equal to the ambient temperature (Td (0) = Ta), the equations for
calculating the response of fixed temperature and rate of temperature rise detectors are,
from Beyler [2]

Td (t) − Td (0) = (�T/�T ∗
2 )�T ∗

2

[
1 − 1 − e−Y

Y

]
(10)

dTd (t)

dt
= (4/3)(�T/�T ∗

2 )(�T ∗
2 )1/4

(t/t∗
2 )D

(1 − e−Y ) (11)

where

Y = 3

4

(
u

u∗
2

)1/2( u∗
2

(�T ∗
2 )1/2

)1/2(
�T ∗

2

RT I

)(
t

t∗
2

)
D (12)

and

D = 0.188 + 0.313r/H (13)
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In Equation (12), RTI is the response time index (in m
1
2 s− 1

2 ) which is a measure of the thermal
sensitivity of the detector or sprinkler. This is a property of the thermal sensing element
itself without external influence such as affecting the convective heat transfer coefficient
by the air speed. The RTI can be determined from using the plunge test with a wind tunnel
[8, 10].

Equations (1) to (13) constitute a complete mathematical description of the transient
response of a thermal detector to a t2-fire. This is the basis for all current designs of thermal
detection systems.

3. Layout Design of Thermal Detection Systems

Spacing of detectors required to respond to a specific fire scenario has to be considered in
the layout design. The detector must respond when the fire reaches a certain threshold heat
release rate or, if the fire growth rate is known, a specific amount of time.

The best possible location of a thermal detector is directly over the fire. If there are specific
hazards to be protected, the design should include detectors directly overhead or inside
of the hazard. In areas without specific hazards, the design approach generally accepted
by the fire protection community is to space the detector evenly in a rectangular pattern
across the ceiling. When the detectors are evenly spaced, the point that is the farthest
from any detector will be in the middle of the four detectors as shown in Figure 1. For
a given detector spacing S, and a given detector actuation temperature, Tact, and detector
characteristics RTI, the detector response time and heat release rate can be determined from
Equations (1) to (13) with a radial distance of

r = S/21/2 (14)

As an illustration of the design process, a fire detection system is now designed for an un-
sprinklered manufacturing building using fixed-temperature heat detectors. The parameters
of the illustration is selected to correspond exactly to those of example 1 presented in refer-
ence [13] to allow for a direct comparison of the different design approaches. Specifically,
the area being considered has a large flat ceiling 3 m high. Ambient temperature is assusmed

Figure 1. Positions of evenly spaced detectors and the location of
the point (mark X) which is farthest from any of the detector.
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to be 10◦C. The fire scenario involves the ignition of a stack of wooden pallets. The pallets
are stacked 1.5 m high. Fire tests show that this type of fire follows the p = 2 power-law
equation with a tc of approximately 150 s. The fixed-temperature heat detector available has
a RTI of approximately 100 m1/2s1/2 and an actuation temperature of 57◦C. The plant fire
brigade feels that they can control and extinguish the fire if the fire can be detected when
the fire reaches a heat release rate of approximately 1500 kW. The design goal is thus to
determine the appropriate detector spacing such that at the time of the detector activation,
the heat release rate of the fire is less than 1500 kW. For the fire with a tc of 150 s, the goal
for the detecting time is about 180 s.

3.1. The Determinstic Approach

The known parameters for the design problem are:

H = 1.5 m

Ta = 10◦C(283 K)

α = 1055/1502 = 0.047(kW/s2)

RTI = 100 m1/2s1/2

The detector needs to reach a temperature of 57◦C in 180 s. Equations (1) to (13) can be
solved iteratively to yield a detector spacing S of about 7 m (r = 5 m). The detail of the
solution process is also given in reference [13].

3.2. The Monte Carlo Approach

There are clearly many uncertainties associated with the assumed fire scenario (location of
the fire, the fire growth rate, height of the wooden pallets when the fire begin, etc.) which
can change significantly the predicted detector spacing. The Monte Carlo approach [17]
will be effective in illustrating the effect of these uncertainties.

Consider first the effect of the location of the fire. Since the fire can start at any location
below the ceiling, the actual detection time can be significantly shorter than that predicted
by the deterministic approach (which utilizes the longest possible distance between the fire
and the detector). An architect, for example, might thus want to use a large detector spacing
(>7 m) for the fire detection system for the same design objective based on consideration
of economic and other factors. The Monte Carlo approach can be used to provide a rational
evaluation for any proposed variation from a deterministic design.

Specifically, the fire will be assumed to occur anywhere under the ceiling with a uniform
probability distribution. For a given detector spacing S, a large number of calculations (N )
are carried out to yield a distribution for the heat release rate at the time of detection. The
number of cases (N f ) in which the heat release rate exceeds the desgin objective can be
computed. A failure probability can then be evaluated as

F = N f

N
(15)

The failure probability for different detector spacing generated with N = 50,000 (larger
number yield essentially the same result) is shown in Figure 2. As expected, the failure
probability is zero up to a spacing of 7 m and the rises rapidly to 0.5 for S = 12 m. The
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Figure 2. Failure probability for different detector spacing.

distribution of heat release rate at the time of detection, however, is anti-symmetric with a
larger concentration in region with lower heat release rate. The distribution for cases with
S = 7 m and S = 10 m are shown in Figure 3. The average heat release rate at the time of
detection together with values bounded by one standard deviation are shown in Figure 4.
These data are valuable for a risk based and/or cost-benefit based design for thermal fire
detection system. For example, if a builder is willing to accept a design in which the design
objective (1500 kW) is met by the average value plus one standard deviation of the heat
release rate at the time of detection, a detector spacing of 8 m can be used for the design.

4. A General Monte-Carlo Based Design of Thermal
Detection Systems

In addition to the uncertainty of the fire location, the Monte Carlo approach can be used
to readily account for other uncertainty in the fire scenario. In this section, the uncertainty
in the fire growth rate and the height of the wooden pallets when the fire begin will be
considered and their effects on the design will be assessed.

In cases for which the exact fuel involved in a fire cannot be known, the designer must
rely on available data on common materials. One example of such data is a set of values for
α and tc generated from a series of furniture calorimeter tests done at the National Bureau
of Standard [16]. These data are now available from standard reference [8] and is presented
as a discrete probability and probability density distribution in Figure 5. These data will be
used to illustrate the effect of uncertainty in the heat release rate.

Since the stack of wooden pallets has an initial height of 1.5 m, the initial location of the
fire can physically be of any values in the range of 0 to 1.5 m. To assess the effect of this
uncertainty, the present work will assume a uniform probability for the value of H in the
range from 1.5 to 3 m.
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Figure 3. Probability distribution of heat release rate at time of
detection for the case with S = 7 m and 10 m. The average value
(Q av) and standard deviation (σ) are also shown in the figure.

A Monte Carlo simulation with N = 50,000 is carried out to determine the heat release
rate at the time of detection accounting for the above uncertainty. The failure probability for
different detector spacing is presented in Figure 6. The failure probability calculated without
accounting for the uncertainty is also shown in the same figure for comparison. Because
of the increased probability of a fast fire growth rate (smaller tc), the failure probability
increases for a given detector spacing. A detector spacing of about 3 m is now required to
meet the design objective of detecting all fires prior to a heat release rate of 1500 kW.

The distribution for the heat release rate at the time of detection for two detector spacings
is shown in Figure 7. It is interesting to note that the qualitative behavior of the distribution
is different from those of Figure 3. Uncertainties in the fire scenario affect not only the
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Figure 4. Average value plus and minus one standard deviation of
the heat release rate at detection predicted by the Monte Carlo
method.

Figure 5. Discrete probability and probability density for the range
of tc generated by the furniture calorimeter tests of NBS.
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Figure 6. Failure probability for different detector spacing
accounting for the uncertainty in tc and H (the base case corresponds
to results with constant tc and H presented in Figure 2).

Figure 7. Probability distribution of heat release rate at time of
detection for the case with S = 4 m and 7 m, accounting for the
uncertainty in tc and H .
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Figure 8. Average value plus and minus one standard deviation of
the heat release rate at detection predicted by the Monte Carlo
method, accounting for the uncertainty in tc and H .

average value of the heat release rate at detection, but also the overall distribution. Finally,
the average heat release rate at the time of detection, and its value plus and minus one
standard deviation are shown in Figure 8. The inclusion of uncertainties leads to a wider
spread of the predicted value for heat release rate at detection. This behavior can have
important implication in the development of risk based and/or cost-benefit based design of
thermal detection system.

5. Conclusion

The deterministic approach for the layout design of thermal fire detection system is shown to
be quite limited in terms of its capability to assess the effect of uncertainties in the assumed
fire scenarios. Utilizing an illustrative example, the Monte Carlo approach [17] is shown
to be effective not only in developing a design for the given design objective, but also in
providing a statistical assessment of the design and the possible alternatives. The method
also provides a rational basis to account for the effect of uncertainties in the assumed fire
scenarios. The Monte Carlo method is thus an effective approach for design applications in
the development of engineering performance-based fire codes [3, 6, 7].

It should be noted that there are many other uncertainties, beyond those considered in
this work, associated with the design of thermal fire detection system. While the present
approach can be readily expanded to account for additional uncertainties, the expansion
should be done carefully. Assigning an arbitrary probabilistic distribution to a physical
parameter (e.g., variation of RTI, multiple fire source, a non-t2 fire, etc.) without a careful
physical and mathematical consideration can lead to an increase in the overall uncertainty
of the model’s prediction and thus defeat the purpose of the Monte Carlo approach. As
shown by the difference between Figures 4 and 8, the inclusion of additional parameters
can have significant effect on the model’s prediction. Indeed, the choice of parameters and
the associated probabilistic distributions to be included in the analysis is an important step
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for the overall effectiveness of the Monte Carlo approach. This issue is currently under
active consideration and will be presented in future publications.

Nomenclature
A dimensionless constant (Equation (6))
C p specific heat of gas
D dimensionless parameter (Equation (13))
g gravitational constant
H height above fire
p positive exponent in heat release rate
Q̇ heat release rate
RTI response time index of detector
S detector spacing
r radial distance from fire plume axis
t time
tc critical time
t∗

p reduced time
T gas temperature
Ta ambient temperature
Td detector temperature
u instantaneous velocity of fire gas
u∗

p reduced gas velocity
Y dimensionless parameter (Equation (12))
α fire intensity coefficient
�T increase above ambient in gas temperature
�Td increase above ambient in detector temperature
ρ0 density of ambient air
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