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THE MULTIPLE ABSORPTION COEFFICIENT ZONAL
METHOD (MACZM), AN EFFICIENT COMPUTATIONAL
APPROACH FOR THE ANALYSIS OF RADIATIVE HEAT
TRANSFER IN MULTIDIMENSIONAL INHOMOGENEOUS
NONGRAY MEDIA

Walter W. Yuen
Department of Mechanical and Environmental Engineering, University of
California at Santa Barbara, Santa Barbara, California, USA

The formulation of a multiple absorption coefficient zonal method (MACZM) is presented.

The concept of generic exchange factors (GEF) is introduced. Utilizing the GEF concept,

the MACZM is shown to be effective in simulating accurately the physics of radiative

exchange in multidimensional, inhomogeneous, nongray media. The method can be applied

directly to a fine-grid finite-difference or finite-element computation. It is thus suitable for

direction implementation in an existing computational fluid dynamics (CFD) code for

analysis of radiative heat transfer in practical engineering systems.

The feasibility of the method is demonstrated by calculating the radiative exchange between

a high-temperature (�3,000K) molten nuclear fuel (UO2) and water (with a large vari-

ation in absorption coefficient from the visible to the infrared) in a highly three-dimensional

and inhomogeneous environment simulating the premixing phase of a steam explosion.

INTRODUCTION

The ability to assess the effect of radiation heat transfer in multidimensional
inhomogeneous media is important in many engineering applications such as the
analysis of practical combustion systems and the mixing of high-temperature nuclear
fuel (UO2) with water for safety considerations in nuclear reactors. Over the years,
many different solution techniques with various levels of complexity (e.g., the differ-
ential (PN) method [1, 2], the multiflux or the discrete ordinate method [3–7]), the
discrete transfer method [8–11], the finite-volume method [12–15], the finite-element
method [16, 17], the Monte Carlo method [18–21], and the zonal method [22–24])
have been developed to provide a quantitative assessment of the radiation effect.
While these techniques all have some degree of success in demonstrating certain
effects of the radiation heat transfer, particularly in simplified idealized conditions
(e.g., 1-D or 2-D gray homogeneous medium), none of these techniques has been
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developed sufficiently so that it can be used robustly and accurately in the design of
practical engineering systems.

Indeed, the lack of a computationally efficient and accurate approach has been
a major difficulty limiting engineers and designers in addressing many important
engineering issues accounting for the effect of thermal radiation. For example, in
the analysis of steam explosion in reactor safety considerations, it is important for
account for the radiative exchange between hot molten material (e.g., UO2) and
water. The absorption coefficient for water is plotted together with the blackbody
emissive power at 3,052K (the expected temperature of molten UO2 in a nuclear
accident scenario) in Figure 1. The radiative exchange between water and UO2 must
account for the highly nongray and rapidly increasing (by more than two orders of
magnitude) characteristics of the absorption coefficient of water. The multidimen-
sional and inhomogeneous aspects of the ‘‘premixing’’ process are illustrated by
Figure 2. In this particular scenario, molten UO2 is released from the top into a cyl-
indrical vessel with an annular overflow chamber as shown in the figure. Even with
highly subcooled water (say, 20�C at 1 atm), voiding occurs quickly, leading to a
complex two-phase mixture surrounding the hot molten UO2. The radiative heat
transfer between the hot molten UO2 and the surrounding water is a key mechanism
controlling the boiling process. The boiling process, on the other hand, depends on
the radiative heat transfer and thus the amount of liquid water surrounding the hot
molten material. An accurate assessment of this interaction is key to the understand-
ing of this ‘‘premixing’’ process and ultimately to the resolution of the critical issue
of steam explosion when considering reactor safety.

NOMENCLATURE

a absorption coefficient

A area element

dA differential area element

dV differential volume element

D length scale (grid size) of the

discretization

Fggzz dimensionless volume–volume

exchange factor, Eq. (11a)

Fggxz dimensionless volume–volume

exchange factor, Eq. (11b)

Fgsz dimensionless volume–surface

exchange factor, Eq. (14a)

Fgsx dimensionless volume–surface

exchange factor, Eq. (14b)

g1g2 volume–volume exchange factor,

Eq. (1)

g1s2 volume–surface exchange factor,

Eq. (5)

Lc characteristic lengths between two

elements along the selected optical

path

Lmb mean beam length between two

volume (area) elements, Eq. (16)

n unit normal vector

nx; ny; nz dimensionless distance coordinate,

Eq. (12)

Q heat transfer

r distance between volume elements,

Eq. (3)

s distance, Eq. (4)

s1s2 surface–surface exchange factor,

Eq. (6)

T temperature

V volume element

x coordinate

y coordinate

z coordinate

r Stefan-Boltzmann constant

s optical thickness, Eq. (3)

Subscripts

1, 2 label of volume (area) element

90 W. W. YUEN
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Figure 2. Distribution of molten UO2 (left, with the black dot representing the ‘‘fuel’’ as Lagrangian

particles) and void fraction distribution of water (right) during a premixing process.

Figure 1. Absorption coefficient of water and blackbody emissive power at 3,052K.
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Over the years, the zonal method has been shown to be an effective approach to
account for the multidimensional aspects of radiative heat transfer in homogeneous
and isothermal media [22, 23]. This method was later extended for application to inho-
mogeneous and nonisothermal media with the concept of ‘‘generic’’ exchange factors
(GEF) [24]. The underlying principle of the extended zonal method is that if a set of
generic exchange factors with standard geometry is tabulated, the radiative exchange
between an emitting element and an absorbing element of arbitrary geometry can be
generated by superposition. The inhomogeneous nature can be accounted for by using
the appropriate average absorption coefficient in the evaluation of the generic
exchange factor. As grid size decreases, it is expected that the accuracy of the super-
position will increase. The error of using a single average absorption to account for
the absorption characteristics of the intervening medium will also decrease.

While the extended zonal method was effective in accounting for the effect of
an inhomogeneous medium in some problems [24], the accuracy of the approach for
general application is limited. Specifically, by using a set of GEF which depends on
only a single average absorption coefficient, the method does not simulate correctly
the physics of radiative exchange between two volume elements, which depends gen-
erally on at least three characteristic absorption coefficients (namely, the absorption
coefficient of the emitting element, the absorption coefficient of the absorbing
element, and the average absorption coefficient of the intervening medium). A
reduction in grid size alone cannot address this fundamental limitation.

In addition, the concept of a single average absorption coefficient for the inter-
vening medium is also insufficient, particularly in an environment where there is a
large discontinuity of the absorption coefficient in areas around either the absorbing
or emitting elements. For example, consider the radiative exchange between a radiat-
ing cubical water element V1 and an absorbing cubical water element V2 as shown in
Figure 3. The absorbing element V2 is an element situated at a liquid=vapor phase
boundary. It is adjacent to another element of liquid water on one side while

Figure 3. Example geometry highlighting the difference in ‘‘average absorption coefficient’’ for different

optical paths.

92 W. W. YUEN
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surrounded by a medium which is effectively optically transparent. As shown in the
same figure, there are two possible optical paths, indicated asS1 and S2, over which the
average absorption coefficient can be evaluated. For the physical dimensions as shown
in the figure, the average absorption coefficient evaluated along the optical path S2

increases from 6.38 1=cm to 306 1=cm as the wavelength increases from 0.95 mm to
3.27 mm, while the average absorption coefficient evaluated along the optical path S1

remains effectively at zero (ignoring the very small absorption by water vapor). It
would be difficult to evaluate the radiative exchange between the two elements V1

and V2 accurately using a single exchange factor based on a single average absorption
coefficient for the intervening medium. This large discrepancy in the average absorp-
tion coefficient of the two optical paths remains even in the limit of small grid size.

The objective of the present work is to present the mathematical formulation of
a multiple absorption coefficient zonal method (MACZM) which is mathematically
consistent with the physics of radiative absorption. The method will be shown to be
efficient and accurate in the simulation of radiative heat transfer in inhomogeneous
media. A set of ‘‘three absorption coefficient’’ volume–volume exchange factors and
‘‘two absorption coefficient’’ volume–surface exchange factors are tabulated for rec-
tangular elements. The generic exchange factor (GEF) concept is expanded to a two-
component formulation to account for the possible large variation of absorption
coefficient in regions surrounding the absorbing or emitting elements. Based on these
two-component generic exchange factors, the multidimensional and nongray effects
in any discretized domain can be evaluated accurately and efficiently by superpo-
sition. The accuracy of the superposition procedure is demonstrated by comparison
with results generated by direct numerical integration. The characteristics of radiat-
ive exchange in highly multidimensional, inhomogeneous, and nongray media such as
those existing in the premixing phase of a steam explosion (as shown in Figure 2) are
presented to illustrate the feasibility of the approach.

MATHEMATICAL FORMULATION

General Formulation

The basis of the zonal method [22] is the concept of exchange factor. Math-
ematically, the exchange factor between two discrete volumes, V1 and V2, in a radiat-
ing environment is

g1g2 ¼
Z
V1

Z
V2

a1a2e
�s dV1 dV2

pr2
ð1Þ

where

r ¼ ðx1 � x2Þ2 þ ðy1 � y2Þ2 þ ðz1 � z2Þ2
h i1=2

ð2Þ

s is the optical thickness between the two differential volume elements, dV1 and dV2,
given by

s ¼
Z ~rr2

~rr1

aðsÞds ð3Þ

MULTIPLE ABSORPTION COEFFICIENT ZONAL METHOD 93
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with a being the absorption coefficient and

s ¼ r� r1j j ð4Þ
The integration in Eq. (3) is performed along a straight line of sight from r1 to r2.

In a similar manner, the exchange factor between a volume element V1 and a
surface element A2 and that between two area elements A1 and A2 are given, respect-
ively, by

g1s2 ¼
Z
V1

Z
A2

a1e
�s n2 � rj jdV1dA2

pr3
ð5Þ

s1s2 ¼
Z
A1

Z
A2

e�s n1 � rj j n2 � rj jdA1dA2

pr4
ð6Þ

where n1 and n2 are unit normal vectors of area elements dA1 and dA2.
It should be noted that Eqs. (1), (5), and (6) are applicable for general inhomo-

geneous nonscattering media in which the absorption coefficient is a function of pos-
ition. Physically, the exchange factor can be interpreted as the fraction of energy
radiated from one volume (or area) and absorbed by a second volume (or area).
Specifically, for a volume V1 with uniform temperature T1, the absorption by a
second volume V2 of radiation emitted by V1 is given by

QV1!V2
¼ rT4

1g1g2 ð7Þ

and the absorption by a black surface A2 of radiation emitted by V1 is given by

QV1!A2
¼ rT4

1g1s2 ð8Þ

Similarly, for a black surface A1 with uniform temperature T1, the absorption by a
volume V2 of radiation emitted by A1 is given by

QA1!V2
¼ rT4

1 s1g2 ð9aÞ

where, by reciprocity,

s1g2 ¼ g2s1 ð9bÞ

Finally, the absorption by a black surface A2 of radiation emitted by A1 is given by

QA1!A2
¼ rT4

1 s1s2 ð10Þ

The Discretization

The evaluation of Eqs. (7)–(10) in a general transient calculation in which the
spatial distribution of the absorption coefficient is changing (for example, due to the
change in the spatial distribution of hot materials and void fraction during the ‘‘pre-
mixing’’ process as shown in Figure 2) is too time-consuming even with fast compu-
ters. Anticipating that all calculations will generally be done in a discretized

94 W. W. YUEN
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computational domain, it is useful to develop a set of ‘‘generic’’ exchange factors
(GEF) which will be applicable for all calculations.

Specifically, consider the geometry shown in Figure 4. Assuming that the
absorption coefficient within the two discrete volumes (a1 and a2) are constant,
the MACZM introduces two partial exchange factors, ðg1g2Þzz and ðg1g2Þxz, to char-
acterize the radiative exchange between the two volumes. The parallel exchange fac-
tor ðg1g2Þzz represents the radiative exchange between the two volumes consisting
only of those energy rays which pass through the top surface of V1 (z ¼ z1 þD)
and the bottom surface of V2 (z ¼ z1 þ nzD). The transverse exchange factor
ðg1g2Þxz, on the other hand, represents the radiative exchange between the two
volumes consisting only of those energy rays which pass through the ‘‘x-direction’’
side surface of V1 (x ¼ x1 þD) and the bottom surface of V2 (z ¼ z1 þ nzD).
Assuming that the absorption coefficient of the intervening medium is constant
(but different for the two partial exchange factors), the two partial exchange factors
can be expressed in the following dimensionless form:

ðg1g2Þzz
D2

¼ Fggzzða1D; a2D; am;zzD; nx; ny; nzÞ ð11aÞ

ðg1g2Þxz
D2

¼ Fggxzða1D; a2D; am;xzD; nx; ny; nzÞ ð11bÞ

with

nx ¼ x2 � x1
D

ny ¼
y2 � y1

D
nz ¼

z2 � z1
D

ð12Þ

The two functions Fggzzða1D; a2D; am;zzD; nx; ny; nzÞ and Fggxzða1D; a2D; am;xzD;
nx; ny; nzÞ are dimensionless functions of the three optical thicknesses ða1D; a2D;
am;zzD or am;xzDÞ and the dimensionless separation between the two volume
elements ðnx; ny; nzÞ. For a rectangular discretization with constant grid size
(dx ¼ dy ¼ dz ¼ D), these dimensionless distances only take on discretized values,
i.e., nx; ny; nz ¼ 0; 1; 2; . . .. The two dimensionless functions tabulated at different

Figure 4. Geometry and coordinate system used in the definition of the g1g2 GEF.

MULTIPLE ABSORPTION COEFFICIENT ZONAL METHOD 95
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optical thicknesses ða1D; a2D; am;zzD or am;xzDÞ and discretized values of
ðnx; ny; nzÞ constitute two sets of ‘‘generic’’ exchange factor (GEF) which will be
applicable for all calculations with uniform grid size. The intervening absorption
coefficient am;zz is the average of the absorption coefficient taken along a line of sight
directed from the center of the top area element of V1 (z ¼ z1) to the center of the
bottom surface of V2 (z ¼ z1 þ nzD). Similarly, the intervening absorption coefficient
am;xz is the average of the absorption coefficient taken along a line of sight directed
from the center of the ‘‘x-direction’’ side area element of V1 (x ¼ x1 þD) to the cen-
ter of the bottom surface of V2 (z ¼ z1 þ nzD).

Mathematically, the exchange factor between the two cubical volumes can be
generated from Eqs. (11a) and (11b) by superposition as

g1g2
D2

¼ Fggzzða1D; a2D; am;zzD; nx; ny; nzÞ þ Fggxzða1D; a2D; am;xzD; nx; ny; nzÞ

þ Fggxzða1D; a2D; am;yzD; ny; nx; nzÞ
þ Fggzzða1D; a2D; am;yyD; nz; nx; nyÞ
þ Fggxzða1D; a2D; am;zyD; nz; nx; nyÞ
þ Fggxzða1D; a2D; am;xyD; nx; nz; nyÞ
þ Fggzzða1D; a2D; am;xxD; ny; nz; nxÞ
þ Fggxzða1D; a2D; am;yxD; ny; nz; nxÞ
þ Fggxzða1D; a2D; am;zxD; nz; ny; nxÞ ð13Þ

Equation (13), together with the tabulated values of the two GEFs,
Fggzzða1D; a2D; am;zzD; nx; ny; nzÞ and Fggxzða1D; a2D; am;xzD; nx; ny; nzÞ, contain all
the essential physics needed to characterize the radiative exchange between the
two elements. These two factors account for the absorption characteristics of the
absorbing and emitting element ða1D; a2DÞ. By using different average absorption
coefficients ðam;pqD; p; q ¼ x; y; zÞ for the intervening medium, they accounts for
not only the absorption characteristics of the intervening medium, but also the vari-
ation of absorption characteristics in the neighborhood of the absorbing and emit-
ting elements (such as the situation shown in Figure 3).

The exchange factor g1s2 can be similarly expressed in a dimensionless form.
Using the geometry shown in Figure 5, two partial exchange factors, ðg1s2Þz and
ðg1s2Þx, are introduced. Physically, the parallel exchange factor ðg1s2Þz represents
the radiative exchange between V1 and A2 consisting only of those energy rays which
pass through the top surface of V1 (z ¼ z1 þD). The transverse factor ðg1s2Þx, on the
other hand, represents the radiative exchange between V1 and A2 consisting only of
those energy rays which pass through the ‘‘x-direction’’ side surface of V1

(x ¼ x1 þD). Assuming that the absorption coefficient of the intervening medium
is constant (but different for the two partial exchange factors), the two partial
exchange factors can be expressed in the following dimensionless form:

ðg1s2Þz
D2

¼ Fgszða1D; am;zD; nx; ny; nzÞ ð14aÞ

96 W. W. YUEN
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ðg1s2Þx
D2

¼ Fgsxða1D; am;xD; nx; ny; nzÞ ð14bÞ

Note that in Figure 5, the area A2 is assumed to be parallel to the x–y plane. For
general application, this does not represent a loss of generality, since a discretized
area is always parallel to one of the face of the discretized volume in a rectangular
coordinate system with equal grid size. The two average absorption coefficients
are taken along the two lines of sight directed toward the center of the receiving
plane, from the top area element (z ¼ z1 þD) and x-direction side area element
(x ¼ x1 þD), respectively. Similar to Eq. (13), the exchange factor between V1

and A2 can be generated by superposition as

g1s2
D2

¼ Fgszða1D; am;zD; nx; ny; nzÞ þ Fgsxða1D; am;xD; nx; ny; nzÞ

þ Fgsxða1D; am;yD; ny; nx; nzÞ ð15Þ

The exchange factor s1s2 is a function of only one average absorption coef-
ficient for the intervening medium (am). Its formulation and mathematical behavior
have already been presented and discussed in an earlier work [24] and will not be
repeated here.

The ‘‘Generic’’ Exchange Factor (GEF) and Its Properties

Numerical data for the ‘‘generic’’ exchange factors are tabulated, and they are
presented in detail elsewhere [26]. For a practical calculation, these factors can serve
as a ‘‘look-up’’ table based on which the radiative exchange can be computed accu-
rately and efficiently by superposition.

Since GEFs are functions only of optical thicknesses and geometric orien-
tation, the accuracy of the superposition procedure is generally insensitive to the
physical dimension D (i.e., the grid size). As an illustration, the radiative exchange
between a volume element and area element as shown in Figure 6 is considered.
The superposition solutions are generated by subdividing the volume and area into
cubical volume and area elements with dimension D. A comparison between the

Figure 5. Geometry and coordinate system used in the definition of the g1s2 GEF.

MULTIPLE ABSORPTION COEFFICIENT ZONAL METHOD 97
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superposition solution and that generated by direct numerical integration is shown in
Table 1. For the two volume elements as shown in Figure 7, a similar comparison is
shown in Table 2. In both cases, the accuracy of the superposition results appears to
be somewhat insensitive to the dimension D. The slight discrepancy can be attributed
to the error in the interpolation of the ‘‘look-up’’ table over discrete optical thick-
nesses. The numerical data presented in the two tables, for example, are generated
with a set of GEFs tabulated for a1D; a2D; amLc ¼ 0; 0:11; 0:16; 0:22; 0:36;
0:44; 0:51, where Lc is the characteristic distance between the emitting and absorbing
elements. This set of optical thickness corresponds approximately to the value for
which the transmissivities (s ¼ e�a1D; e�a2D or e�amLc ) are 1.0, 0.9, 0.8, 0.7, 0.6, 0.5,
and 0.4, respectively. The accuracy can be readily improved by tabulating GEFs

Figure 6. Geometry and coordinate system used in the illustration of the accuracy of the superposition

procedure for the evaluation of the exchange factor g1s2.

Table 1. Comparison between the exchange factor generated by direct numerical integration and those

generated by superposition of GEFs for the geometry of Figure 6a

m a1D amD D=D g1s2 (a1D, amD, 0, 0, m)

1 0.1 0.1, 0.3, 0.5, 1.0 Numerical 0.109e-1, 0.879e-2, 0.709e-2, 0.415e-2

1=2 0.109e-1, 0.880e-2, 0.711e-2, 0.418e-2

1=3 0.109e-1, 0.879e-2, 0.711e-2, 0.417e-2

1=4 0.109e-1, 0.879e-2, 0.710e-2, 0.417e-2

1 1.0 0.1, 0.3, 0.5, 1.0 Numerical 0.770e-1, 0.621e-1, 0.500e-1, 0.292e-1

1=2 0.764e-1, 0.617e-1, 0.498e-1, 0.292e-1

1=3 0.765e-1, 0.617e-1, 0.498e-1, 0.292e-1

1=4 0.766e-1, 0.618e-1, 0.499e-1, 0.292e-1

2 0.1 0.1, 0.3, 0.5, 1.0 Numerical 0.381e-2, 0.252e-2, 0.167e-2, 0.600e-3

1=2 0.381e-2, 0.253e-2, 0.168e-2, 0.603e-3

1=3 0.380e-2, 0.252e-2, 0.167e-2, 0.601e-3

2 1.0 0.1, 0.3, 0.5, 1.0 Numerical 0.265e-1, 0.176e-1, 0.117e-1, 0.417e-2

1=2 0.264e-1, 0.175e-1, 0.116e-1, 0.417e-2

1=3 0.264e-1, 0.175e-1, 0.116e-1, 0.416e-2

aD is the length scale of the element used in the GEF superposition.

98 W. W. YUEN
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Table 2. Comparison between the exchange factor generated by direct numerical integration and those

generated by superposition of GEFs for the geometry of Figure 7a

mx, mz a1D amD a2D D=D g1g2 (a1D, a2D, amD, mx, 0, mz)

0, 0 ¼a2D N=A 0.1, 0.3, 0.5 Numerical 0.183e-1, 0.153, 0.383

1=2 0.194e-1, 0.148, 0.391

1=3 0.175e-1, 0.149, 0.384

1=4 0.175e-1, 0.155, 0.386

0, 1 0.1 N=A 0.1, 0.3, 0.5 Numerical 0.351e-2, 0.973e-2, 0.150e-1

1=2 0.351e-2, 0.973e-2, 0.150e-1

1=3 0.352e-2, 0.974e-2, 0.151e-1

1=4 0.352e-2, 0.976e-2, 0.151e-1

0, 1 0.5 N=A 0.1, 0.3, 0.5 Numerical 0.150e-1, 0.417e-1, 0.644e-1

1=2 0.150e-1, 0.417e-1, 0.644e-1

1=3 0.151e-1, 0.417e-1, 0.645e-1

1=4 0.151e-1, 0.418e-1, 0.646e-1

1, 1 0.1 0.0 0.1, 0.3, 0.5 Numerical 0.164e-2, 0.451e-2, 0.692e-2

1=2 0.164e-2, 0.450e-2, 0.689e-2

1=3 0.164e-2, 0.451e-2, 0.690e-2

1=4 0.165e-2, 0.452e-2, 0.692e-2

1, 1 0.1 0.5 0.1, 0.3, 0.5 Numerical 0.138e-2, 0.379e-2, 0.580e-2

1=2 0.139e-2, 0.381e-2, 0.582e-2

1=3 0.140e-2, 0.383e-2, 0.585e-2

1=4 0.140e-2, 0.384e-2, 0.587e02

1, 1 0.5 0.0 0.1, 0.3, 0.5 Numerical 0.692e-2, 0.191e-1, 0.292e-1

1=2 0.688e-2, 0.189e-1, 0.290e-1

1=3 0.698e-2, 0.189e-1, 0.290e-1

1=4 0.691e-2, 0.190e-1, 0.291e-1

1, 1 0.5 0.5 0.1, 0.3, 0.5 Numerical 0.580e-2, 0.159e-1, 0.244e-1

1=2 0.582e-2, 0.160e-1, 0.244e-1

1=3 0.584e-2, 0.162e-1, 0.245e-1

1=4 0.586e-2, 0.161e-1, 0.246e-1

aD is the length scale of the element used in the GEF superposition.

Figure 7. Geometry and coordinate system used in the illustration of the accuracy of the superposition

procedure for the evaluation of the exchange factor g1g2.
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at more optical thicknesses. Note that for practical application, the grid size is
important only in determining how well the rectangular discretization simulates
the actual geometry. When the geometry is simulated accurately, the accuracy of
the MACZM depends only on the number of discrete data points used in the
GEF table.

APPLICATION

The MACZM is applied to analyze the effect of radiation on the mixing of hot
molten fuel with water. The formulation of the full numerical model for the simula-
tion of the mixing behavior is presented elsewhere [25]. For simplicity, the radiative
absorption of steam is neglected in the calculation. The detailed analysis and results
will be presented in future publications. In the present work, the predicted radiative
heat transfer distribution is presented to illustrate the effectiveness of MACZM.

Because of the large variation of the absorption coefficient of water over the
wavelength of interest as shown in Figure 1, a three-band approach is used to cap-
ture the difference in radiative energy distribution in the different wavelength
regions. The stepwise approximation used for the absorption coefficient of water
is shown in Figure 8. The absorption coefficients of the three bands correspond to
the absorption coefficients of three characteristic wavelengths, 0.4915, 0.9495, and
3.277 mm, respectively. The middle wavelength (0.9495 mm) is the wavelength at
which the blackbody emissive power at the molten fuel temperature (3,052K) is a

Figure 8. The three-band approximation of the water absorption coefficient used in the premixing

calculation.
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Figure 9. (a) Distribution of radiative absorption by water in the three absorption bands (the right three

figures) at 0.6 s after the initial pour predicted by the premixing calculation. The first figure on the left

represents the distribution of the molten fuel (the black dots are the Lagrangian particles representing fuel)

and the second figure represents the void fraction distribution. (b) Distribution of radiative absorption by

water in the three absorption bands (the right three figures) at 0.8 s after the initial pour predicted by the

premixing calculation. The first figure on the left represents the distribution of the molten fuel (the black

dots are the Lagrangian particles representing fuel) and the second figure represents the void fraction dis-

tribution. (c) Distribution of radiative absorption by water in the three absorption bands (the right three

figures) at 1.0 s after the initial pour predicted by the premixing calculation. The first figure on the left

represents the distribution of the molten fuel (the black dots are the Lagrangian particles representing fuel)

and the second figure represents the void fraction distribution.

MULTIPLE ABSORPTION COEFFICIENT ZONAL METHOD 101



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 S

an
ta

 B
ar

ba
ra

] A
t: 

18
:1

3 
23

 O
ct

ob
er

 2
00

7 

maximum. The fractions of energy radiated by the molten fuel (at 3,052K) for the
three bands are 0.125, 0.647, and 0.228, respectively. Using a grid size of 10 cm (with
inner vessel diameter 70 cm), the rates of energy absorption by water predicted for
three different times during the premixing transient are shown in Figures 9a, 9b,
and 9c. It can be readily observed that the distribution of water energy absorption
varies significantly among the three bands. In the first band, at which water is opti-
cally transparent, the radiation penetrates a significant distance away from the
radiating molten fuel. This accounts for the ‘‘red hot’’ visual appearance commonly
observed in the interaction of high-temperature molten fuel and water. The first
band, however, accounts for only 12.5% of the total energy radiated from the fuel.
For the remaining energy, the water absorption coefficient is high and the water
absorption is highly localized in the region surrounding the fuel. The localized
absorption appears to dominate the boiling process, as the second and third bands
account for more than 80% of the radiative emission. The MACZM captures both
the transient and spatial distribution of the radiative absorption distribution accu-
rately and efficiently.

Because of the large variation of the water absorption coefficient over wave-
length and the large values of the water absorption coefficient in the long-wavelength
region, a larger number of bands and smaller grid size are needed to simulate accu-
rately the effect of radiation on the premixing process. This effort is currently under-
way, and results will be presented in future publications.

CONCLUSION

The formulation of a multiple absorption coefficient zonal method (MACZM)
is presented. Four ‘‘generic’’ exchange factors (GEF) are shown to be accurate and
effective in simulating the radiative exchange. Numerical values of these GEFs are
tabulated and their mathematical behavior is described.

The MACZM is shown to be effective in capturing the physics of radiative heat
transfer in a multidimensional, inhomogeneous, three-phase mixture (molten fuel,
liquid, and vapor) generated in the premixing phase of a steam explosion.
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