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A Limiting Approach for the
Evaluation of Geometric Mean
Transmittance in a
Multidimensional Absorbing and
ww.wen || [sotropically Scattering Medium

Associate Professor,

Department of Mechanical The calculation of the geometric-mean transmittance factor between areas with an

and Enw{f:ﬁ;?@ E? %’:ﬁimg’ intervening absorbing and isotropically scattering medium is considered. While an
Santa Barbara, Calif. 93106 exact expression for the factor is shown to be quite complicated, the upper and
Assoc. Mem. ASME lower limits of the factor can be readily generated from physical consideration.
Integral expressions for successively increasing (decreasing) values of the lower
(upper) limits are obtained. For two-dimensional systems, these expressions are
reduced to integrals involving S, (x}, a class of exponential integral function that
has been tabulated in a previous work. Utilizing the kernel substitution technique,
these integrals are evaluated analytically in closed form for some selected
geometries. For cases with small optical thickness and large scattering albedo, both
limits are shown to converge relatively slowly 1o the actual transmittance factor. But
the decreasing difference between the two limits provides accurate estimate of the
geometric-mean transmittance factor. Based on these results, some interesting
conclusions concerning the effect of scattering on multidimensional radiative
u transmission are established.

1 Introduction

The importance of scattering in the analysis of radiative improved approximate values for the transmittance factor
heat transfer in many practical combustion systems is well and the associated uncertainty. These results are used to assess
known [1]. In recent years, significant work has been reported  the effect of scattering on radiative transmission in simple
in determining the scattering effect on various radiating systems. At certain optical thicknesses and scattering albedos,

i

systems with simple geometries [2-5]. the scattering contribution to the total geometric-mean M
For practical application, one of the important radiation transmittance factor is shown to be very significant. E
parameters is the geometric-mean transmittance factor "
between two arbitrary surfaces. For an intervening medium 3
that is mnonparticipating or purely absorbing, the 2 Analysis =
rfndthematlcz;i fl(l)rlzn ulatloré a?d r}r;ethod 9f evalu?tlongor %L}Ch (a) General Formulation. For two arbitary infinitesimal v
actors are well known [6, 7]. For an intervening absorbME 4 05 g4, and dA, the energy transfer by radiation from dA, =

and scattering medium, however, the amount of reported
work is scarce. In their book [6], Hottel and Sarofim
estima.te_d the upper and lower limits of the transmisivity and d0o- a4 =qoodAcdF jo—da (Tao—daa + Tao-da) N
reflectivity of a one-dimensional isotropically scattering slab. . L . 5
In a recent work [8], the present author developed simple  Where oo I the radiative heat flux leaving surface dA,,
analytical expressions for the first approximation of the upper dFgo-da 18 the shape factor between dA, and dA, Tgo-qa 15 the
and lower limits of the geometrical-mean {ransmittance for eometric-mean transmittance between dA, and dA
three selected geometries. These two works, to the best of the  calculated only along the line of sight between the two areas,
present author’s knowledge, appear to be the only reported and 744 is the added fraction of energy transfer due to the
efforts attempting to deal-with this difficult problems. effect of scat‘termg from elements away fr'om the lu}e of sight.
The objective of the present work is to show that py The expression of 74_44 can be readily obtained from
utilizing some simple physical reasoning, the mathematical standard reference [6]. o
development presented in [8] can be generalized to yield In reference (8], first-order approximation for the upper
successively improved estimates of the upper and lower limits and 19‘”“ limits of 1j0-ga WETE genergted by c.on51dermg
of the geometric-mean transmittance factor. Rates of con- radiative transfer between dA, and dA via scattening from a
vergence of the two limiting expressions toward the exact Single volume element. Indeed, utilizing a coordinate system
value of the transmittance factor are shown to be quite slow asshowninFig. 1, these limiting expressions are shown to be
for cases with small optical thickness and large scattering . o z,e Bl
albedo. If considered separately, each limiting expression thus dF o - aal7i0-aalu = - S S S —— dxdy,dz, 2)
has uncertain accuracyin determining the exact transmittance Li
factor. But considered together, the decreasing difference o
between the two expressions can be used to yield successively  dFgo_qa [T0_aqall = 2 dA

to dA can be written as
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Fig.1 Coordinate system and geometry for the calculation of the first-

order approximation of the geometric-mean transmittance
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Fig. 2 Coordinate system and geometry for the calculation of the
second-order approximation of the geometric-mean transmittance

where

E=a+o 4)
Ly=0f+yi+zD)'”? )

and
ra=(x, —x) i+ (¥ -+ (z -2k (6)

In the foregoing expressions, dA, is assumed to be a diffuse
surface; a and o are the absorption and scattering coefficients
of the medium; 7, j, and &, unit vectors in the x- y- and z-
direction; n, the unit normal to the surface dA; and ry,, the
magnetude of the vector r,,. Physically, equation (2) is
generated by assuming that all energy scattered by the volume
dx,dy,dz; will be absorbed by dA. It is clearly the upper limit
of 75 _44. Equation (3), on the other hand, assumes that only
the energy scattered from the volume dx;dy;dz; in the
direction of dA will be absorbed by-dA. Since there are always
secondary scatterings, equation (3) clearly gives the lower
limit of 7. 44 . The limits of integration for equations (2) and
(3) generally remain unspecified until the geometry of the
scattering medium surrounding dA, and dA is defined.

Improved estimates for the upper and lower limits of
799-aa Can be generated by considering physically the added
energy transfer between dA, and dA4 due to scattering by
multiple volume elements. For example, consider the effect of
scattering from two volume elements as shown in Fig. 2, The
second-order approximations of the lower and upper limits of
T30 -4 can be readily written as

AF g5 aalT50_aal2 =dF g gal750-aal} + Go ©)]
dF o a4 70— aa 3 =dF ag_qa 70441l + GF ®)
where
2
g
G= 5
2,0~ EdLi+n2)
S SN S 3. dxldyldzldXZdydeZ (9)
Liri,
and
2
a
Gi= —— dA
1673 a
ner e—E(Ll +rig+rag)
S . S alarraa)e” 70 dx, dy, dz,dx,dy,dz, (10)
Lyrers,

Nomenclature
M; = length defined by equation equations (36), (43) and
a = absorption coefficient (26) 36)
A = area M,, = length defined by equation x = coordinate
dF = shape factor between 23) Y= coord!nate
differential areas M, 4 = length defined by equation Z = Coordlpate _
E = extinction coefficient @27 o = scattering coefficent
F = shape factor n = component of normal 7 = geometric transmittance
G = functions defined by vector n in the z-direction factor
equations (15), (16), (24) n = unit normalto area A .
. and (25) q, .= outgoing radiosity Subscripts
i = unit vector in x-direction Q = energy transfer, equation 0 = parameter associated with
J = unitvector in y-direction 1) area dAy
k = unit vector in z-direction f,4 = vector directed from d0—dA = betweenareadd, and dA
[ = component of normal element dA, to dA i = coordinates of the ith
vector n in the x-direction S, (x) = experimental integral scattering element
L, = length defined by equation function [ = lower limit
&) U, = functions defined by 1 = upper limit
L; = length defined by equation eéquations (32) and (52) .
a7) V, = functions defined by Superscripts
M, = length defined by equation equations (33) and (53) n = order of approximation
(22) Wm = functions defined by s = scattering contribution
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In the above equations, r, and the vector ry, are given by
ra =[xy = x2)* + O -1+ -2 (11
oy = (X —X)i+ (2 =YV + (22— Dk (12)
Physically, G represents the radiative energy that is scattered
in all direction after scattering by two arbitrary volume
elements. It is clearly the maximum amount of energy which
can be scattered twice and intercepted by dA. G?, onthe other
hand, represents the radiative energy that is scattered in the
direction of and intercepted by dA after two scatterings. Itisa
minimum since energies that are scattered more than twice
and intercepted by dA are not included in the consideration.
The foregoing mathematical consideration can be readily
gencralized to yield successively higher-order approximations
of the two limits. Using the same physical arugment, it can be
readily shown that the nth approximations for the two limits
can be written in terms of the (n-1)th approximation by

dF g5 _aa [TEIO—dA]Z=dFd0—dA[Tf10—dA]741 +G,  (13)
dFdo‘dA[ﬁiOfdA”l=dFd04dA[Tin‘dA];'71 +G (14)
where

ar=(2) ()"

. -EL i=n ,-EL;
S . S (ZL?L_};> (H eLz dxidyidzi>dx1dy1dz1 (15)
i i=2 ¢

and

47 g
S S 2, (o, ) e EE1*na)
o Liria
=2 e~ ELidx;dydz;
(I—% Vi v dydiz, (16)
i=2 L;

In the above expressions; €X;,5,X:) is the coordinate of the ith
scattering volume elements; L; and r,.4 2are given by

L,'=[(Xi—xi—1)z+(.Y;‘“)’i—x)2+(zi—zi-1)21/2 a7
£y = (X0 —X) 4 a =2+ (2 =Dk (18)

Physically, it is reasonable to expect that in the limit of
71— oo, the upper (lower) limit of the scattering contribution to
the geometric mean transmittance decreases (increases)
monotonically toward the exact value. Mathematically,
however, it can be readily shown that the rate of convergence
is quite slow. A single limiting expression is thus ineffective in
approximating the exact value. Considering both limiting
expressions simultaneously, on the other hand, relatively
narrow bound of the exact value can be readily generated even
with small values of 7.

(b) Two-Dimensional Systems. For systems with two-
dimensional geometry, the foregoing equations can be
simplified. Specifically, consider dA to be an infinite strip of
width ¢S with the unit normal n given by

n=1li+nk 19)

equations (1), (13), and (14) still remain valid provided dAyp
and dA are interpreted as infinite stripes. Integrals in the y-
direction in -equations (2), (3), (9), (10), (15), and (16) can be
readily evaluated. As shown in [8], the first-order ap-
proximation of the upper and lower limits become

2, S.(EM
dFdO—dA(Tsdo_da)flxzﬂg S —1—2(_—Q
1

dx;dz, 20)

Journal of Heat Transfer

adS
dF g9 aa (To0-da )11= T

S S 21[(X1‘X)H’(Zx“Z)n]'sz(EMl)Sz(EMm)dz dz
1dzy

MM, @b
where
M, =G +zD)"? (22)
and
M, =1x; =)+ (2, —2) 172 (23)

Equations (15) and (16) become

ai=4()
4

i=

2, 8,(EM ) 3 S{(EM;)dxdz;
e\ — T Jdxd 24
S S M, (; M, ) Sl @4
Gl = (T") " ds
S S 2,16, —x) [+ (2, —2) 1)S2(EM)S,(EM 4 )
o MiM3 4
= Si(EM)
ST dxgdz; ) dxdz 25)
(; M; ) e
where
Mi=[(xi_xi—l)2 + (Z,'—Zi—l)z]l/z (26)
and
MnA___[(xn —x)2+(z,, #Z)B]I/z (27)

In the foregoing equations, S, (x) is the exponential integral
function, which has been defined and studied extensively in
[8] and [9]. Equations 20), 21, (24), (24), together with
equations (13) and (14), thus constitute a complcte set of
methematical relations, from which the upper and lower
limits of 75_g44 can be estimated to an arbitrary order degree
of accuracy.

3 Application

In this section, the general mathematical expressions
developed in the previous section are applied to'three selected
geometries to illustrate quantitatively the effect of scattering
on the geometric-mean transmittance. The effectiveness of the
present approach is also demonstrated. The three cases
considered are identical to thoese studied in I8].

Case 1. In this case, the scattering contribution to the
geometric-mean transmittance between dA, at the origin and
an infinite parallel plane 4 facing downward toward dAg ata
given vertical height z is considered. The geometry is shown in
Fig. 3(a). The scattering medium is the semi-infinite region
below the horizontal plane at z. As in [8], :all required in-
tegrations are simplified by the introduction of the following
kernel substitution

X

S (x)=e 2 (28)
2 o
Sz(x)=(';)e . 29)

The accuracy of equations (28) and (29) is illustrated in the
same reference.

Substituting equations (28) and (29) into equations (24) and
(25) and integrating over the following limits

—w<x;<®, i=ln

— oo LX<

-0z <2, i=2,n
0<z, <2
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Fig. 3 Geometries of the three specific cases for dAg and A con-
sidered in the present work

it can be readily shown that G2 and G} are readily reduced to Fuo_a(Thg_a) ) =w(l —e~22) (39)
Gﬁ:za(o_r) ", (0) Fao-a(in-a) 1= wEze™ 0)

N 8 | with @ = o/E being the familiar scattering albedo. Based on

Gr= a( ﬂ) " e~ 2E 31 equations (39) and (40), and the recursive relations defined by

! 8 " equations (13) and (14), and the expressions for G} and GJ as

The functions U, and V, in the above equations satisfy the ~ €XPressed in equations (30-38), the upper and lower limits of
followin recursic R relati(;ns the scattering contribution to the geometric-mean trans-
£ mittance can be readily determined for arbitrary values of n.

2
2 2 +8 7- n Ez
U,= [ #] [L U,y - ( L 3 )e( 4 ) W'ﬁ,] Case 2. In this case, A is an infinite parallel plane facing
E(7" —64) 2 upward at a given location —z as shown in Fig. 3(h). The
(32)  scattering medium is the semi-infinite region above the

22 horizontal plane at - z. Limits of integration become
—— F .
Vnz(é)(zVﬂ—l_e 4 ZW?:) (33 Ty <o, i=l,n
7 E —o<x< oo
with ) —3<7; <o, i=2,n
U =z 34) 0<zi <o
and 1 Direct integration of equations (24) and (25) shows that the
V,= ( — ) (1—e~2%2) (35)  generalized relations represented by equations (30-33) remain
2E valid for this geometry. Equations (34-38), however, are
The function W7 in the above equations is defined by replaced by
2
™ 1
W;ﬂ:S. .. gzi,"*,e_E(zzr won-1) Ui= % (1)
iznol —LZE!z~—z- | _ !
( H e 1 i~ %=1 dz,')dzl (36) V1 = 275, (42)
i=2
Forn = 2, the above integral can be readily evaluated to yield “e{2y + 1r_2: )
, W;”:S...gz;"ﬂle 4"
)X miz™=r
W5"=€( 4 ) z E (_l)r _— 2
r=0 ? el = Elzj-ziy)
(m—r)![(— —Z)E] ( e dZi)dzx “3)
4 i=2
—1y"m!
_ (1) 37
2 m+1 m!
(52
4 71.2 m+1
For n > 2, W} can be obtained from the following recursive [E( 4 +2)]
relation | o O
r=m r+ -F m yba
— iﬂ 2(=2)ymt Wy . "W - W 8 Wi= )Y 2 mWi W+ W 45)
T T 1 = (m=nlE)! m+ 1

From [8], the first-order approximation of the two limits of  Results in reference [8] yield the following expressions for the
o4 are lower and upper limits of 75,_ 4
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Fig. 5 The convergence behavior of Fgg_a 7go—a for case 2 with
Ez =10

FdoAA(TSuo—A)sz (46)
W
Fao sttt l=( 5 e & @

Equations (30-33), (41-47), together with equations (13) and
(14) can now be used to generate successive approximations
for the upper and lower limits of 75 _ 4 for this case.

Case 3. In this case, A is an infinite vertical plane facing the
origin at a given location z as shown in Fig. 3(c). The scat-
tering medium is the semi-infinite region to the left of the
vertical plane at x. Limits of integration for this.case become

—ooLX; <X, i=1,n

—ooLZL®

—00 L Z; <00, i=2,n
0<Z1 <

As shown in [8], additional kernel substitutions for the
regular exponential functions E,(x) and E,(x) are required
before integrals as represented by equations (24) and (25) can
be evaluated in closed form. These substitutions are

E (x)=2e"% (48)
Ey(x)=e™¥ (49)
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Fig. 6 The convergence behavior of Fgg_a 7go—a for case 3 with
Ex=1.0

After integrations, a set of equation analogous to equations
(30-40) are generated. They are

4 2\ n—1
Gr=-2 _°.7L) v, (50

-1
e U, (51)

_”2
o=l st 5 v (Z0)e ) w

, (52)

v, = (;rf:—E) (2V,,_1 -e_'“?E"wg) (53)
(-B)

o) ) e
s,

(D0 e

2 2

i=n—

E 8 Eixy! i I L

—Exy_y — T EWX - Elxp=¥i-

S._.quneti n-lo @ (E e ¢ dx,v)dxl
i=2

(56)

mix™m="

2
o 8 xr=m
WE"=€(T_ kd )E E(_l)r

W (594"

-—(—l)mm![ 7(2 18 m+1— 7r2 18 m+1 ]
[Qz‘z)ﬂ [‘I*?)ﬂ

(57)

M7

rem oy —2ymiWTSl xTHIWA_ - Wi
E ( 1 n—1 1 (58)
r=0

m—r)x2E)™+! m+1
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Table 1 Values of the upper and lower limits of Fyo. 47i9_4 for case 1 (n is
the order of approximation used in generating the presented values)

Ez(Fay-aTtao-a) w n Fao—a{750-4); Fao—altao-4)u
i 0.1 S 0.847%9¢-2 0.8479¢-2
0.1(0.8326) 0.5 12 0.5062¢-1 0.5062e-1
0.9 25 0.1285 0.1302
0.1 5 0.1950e-1 0.1950e-1
0.5(0.4432) 0.5 13 0.1304 0.1304
0.9 25 0.4035 0.4122
0.1 5 0.1472¢-1 0.1472e-1
1.0(0.2194) 0.5 12 0.1125 0.1126
0.9 25 0.4518 0.4696
0.1 5 0.4155¢-2 0.4156e-2
2.0(0.0602) 0.5 9 0.4071e-1 0.4075¢-1
0.9 25 0.2890 0.0329

Table 2 Values of the upper and lower limits of Foy_ 47504
for case 2 (n is the order of approximation used in generating
the presented values: note that Fyy_ 7, _p4 is zero for this
case)

£z @ n Fao-a (o)t Fao-a(Tho_a)u
- 0.1 3 0.2648e-1 0.2648e-1
0 0.5 11 0.1779 0.1781
0.9 25 0.5782 0.5955
0.1 5 0.2192¢-1 0.2193¢-1
0.1 0.5 12 0.1552 0.1553
0.9 25 0.5490 0.5682
- 0.1 5 0.1025¢-1 0.1026e-1
0.5 0.5 13 0.8803¢-1 0.8809¢-1
0.9 25 0.4320 0.4585
0.1 6 0.3928e-2 0,3929¢-2
1.0 0.5 14 0.4182e-1 0.4186¢-1
0.9 25 0.30359 0.3407
0.1 7 0.5647¢-3 0.5648¢-3
2.0 0.5 17 0.8761e-2 0.8767¢-2
0.9 25 0.1424 0.1911

Table 3 Values of the upper and lower limits of Fa_a4tip_4 forcase 1(n is
the order of approximation used in generating the presented values)

Ex(Fao_4Ta0-4) w n Fuao—a(750-a)1 Fao-a(Tho-a)u
0.1 S 0.1478e-1 0.1479¢-1
0(0.5000) 0.5 11 0.9759e-1 0.9766¢-1
0.9 13 0.2963 0.3333
0.1 5 0.1749¢-1 0.1749¢-1
0.1(0.3480) 0.5 11 0.1166 0.1167
0.9 13 0.3600 0.4059
o 0.1 5 0.1660e-1 0.1661¢-1
0.5(0.1409) 0.5 12 0.1216 0.1217
0.9 13 0.4408 0.5231
01 5 0.9447¢-2 0.9454¢-2
1.0(0.5822¢-1) 0.5 13 0.7974e-1 0.7980e-1
0.9 14 0.3771 0.4558
0.1 6 0.1948e-2 0.1949¢-2
2.0(0.1203¢-1) 0.5 15 0.2204e-1 0.2206e-1
0.9 15 0.1920 0.3368
w By (51), the upper and lower limits of the geometric mean
Fao-a(tho-a)h = 5 (2*6‘ T ) (59)  transmittance is a polynominal in w of order n at the nth

4 Results and Discussion

determining the actual scattering contribution of the
geometric-mean transmittance is illustrated forthe three cases
in Figs. 4, 5, and 6. Since G and G7 are both proportional to
0" (and consequently to ") as shown in equations (50) and
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¢ approximation. Cases with small scattering albedo thus

L @ e Mx  _ - converge relatively quickly. The general behavior of the
Fao-a(rio-a)1= <4—_7'r) (m € ) (60) numerical results for different optical thickness is similar to
those presented in these figures. The rate of convergence
general decreases with increasing optical thickness. For cases
I and 2, cvaluations of the two limits are carried out only up
The rate of convergencec of the present approach in  ton = 25. At 1 > 25, numerical results show that the dif-
ference between successive approximations is smaller than the
accuracy of the computer. The higher-order results for these
two cases are thus meaningless. For case 3, the two limiting
solutions begin to oscillate as » becomes large. This behavior
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is probably due to the error of the kernel substitution. The
computation is thus stopped at the lowest value of n beyond
which this oscillation occurs.

In spite of the foregoing limitations, the present results
show clearly that the effect of scattering is extremely im-
portant and cannot be ignored in any realistic engineering
calculation involving radiative transfer. The best estimates of
the two limits of the scattering contribution to the geometric
mean transmittance for the three cases are presented in Tables
1, 2, and 3. Geometric mean transmittances without the
scattering contribution are presented in these same Tables for
comparison. In all three cases, it can be readily observed that
for cases with intermediate or large scattering albedo (@ >
0.5), scattering is the major contribution to the geometric
ransmittance. Neglecting scattering in these cases can lead to
errors ranging from 6 percent {w = 0.5, Ez = 0.1 incase 1) to
1000 percent (w = 0.9, Ex = 2.0 in case 3). In case 2, in fact,
scattering represents the only contribution to the geometric
transmittance function. The effect of scattering also appears
to be most dominant for cases withn intermediate optical
thickness.

Finally, it is interesting to observe that the geometry in case
2, with Ez = 0, can be considered as an approximation of a
purning fuel bed. Results in Table 2 show that the amount of
radiation reabsorbed by a fuel bed enclosed by a scattering
medium (such as the flame) can be as high as 60 percent.
Because of the presence of soot and other products of in-
complete combustion, the scattering albedo for most com-
pusting media is not small. The present results clearly
demonstrate that any energy balance calculations for such
fuel beds without including the effect of scattering can be in
substantial error.

5 Conclusion

An approach is developed to evaluate the upper and lower
limits of the geometric mean transmittance between surfaces

Journal of Heat Transter

with an intervening absorbing and scattering :medium. Ex-
plicit analytical expressions are generated for three systems
with two-dimensional geometry. Results show that for such
systems, the effect of scattering is extremely important andin
some cases constitutes the dominant effect in radiative
transfer. An interesting result concerning the reabsorption by
a burning fuel bed is also generated.
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