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Abstract—Analytical properties, series expansions and asymptotic expansions are generated for S,{x)
which are important integral functions in the analysis of two-dimensional radiative transfer. These
functions are shown to be Fourier transform of the generalized exponential integral function. Table of
values of §,(x), 5,(x), and S;(x) are presented,

1. INTRODUCTION

In the analysis of two-dimensional radiative transfer in an absorbing-emitting medium, the
integral functions defined by
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are important. These functions, for example, were utilized by Smith in his analysis of isotropic
scattering of radiation in a two-dimensional atmosphere."? In the numerical solution for
two-dimensional radiative equilibrium utilizing Hottel’s zonal method,” computation of Sy(x),
$x(x), and S3(x) is required. If a point allocation methed is used for the same problem with the
unknown temperature distribution approximated by polynomials,’ evaluation of S,(x) for higher
values of n is needed.

It is interesting to note that the integral function S,(x} is closely related to the generalized
exponential integral ¢,(x, B). Introduced originally by Brieg and Crosbie®® in their works on
two-dimensional radiative equilibrium and generalized by Yuen and Wong,” ¢,(x, B) is defined by
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where Kq(x} is the modified Bessel function. It can be readily shown that S,(x} and ¢,(x, B)
form an almost Fourier-transform pair, i.e.,
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Evaluation of S,(x) is thus equivalent to the evaluation of €,(x, 8).

The objective of the present work is to present some basic analytical properties of the
integral function S,(x). Series expansion of S,(x) that is convergent for small values of x will
be developed. Asymptotic expansions at large x and suitable for numerical computation will be
presented. An interesting recursive refation for €,(x, 8) will also be introduced. Since a direct
numerical integration of Eq. (1) is difficult due to the existence of singularity, numerical values of
Si(x), Si(x) and Si(x) generated by using series expansion and asymptotic expansion will be
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presented. An alternate expression for S,(x) has been utilized by various investigators*™® in
studies on two-dimensional radiative equilibrium. The validity of this alternate expression and its
shortcoming will be discussed.

2. BASIC PROPERTIES AND SERIES EXPANSIONS OF §,(x).
From the basic definition presented by Eq. (1), it can be shown that
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So(x) = ~Kilx), (6)

Bl 5, (), nz), ™

Sa(x)< 8,.(x) n>m, (&)

and

S,(x) < S, (y) x>y. ©

In Eq. (5}, I'(x) is the gamma function. In the analysis of two-dimensional radiative equilibrium,
two alternate expressions for S,(x) often appear. These are
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Equation (10) appears in the Hottel zonal method of solution and Eq. (11) is used in the work of
Glatt and Olfe’ and Modest.® A set of relations analogous to Eqs. (5)~(9) can be readily
generated for ,(x, B). The three most useful relations are

€.(x, 0) = E,(x), (12)
&lnB=1 'r €.z, Bix)dx, n=1 A (13)
1
and the recursive relation
(1= Des(r, B) = = reges(r, B) ~ 72 [5EB) ], s, (14

In Eq. (12), E,(x) is the exponential function. The proof of Eq. (14) is presented in Ref. 4.
Utilizing Eqs. (5)-(7), it can be shown that S,(x) may be represented by the Maclaurin
expansion
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where

n—1

!,[’n="")’as n=1and—y+2?n1—as n>1 (16)
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with + being the Euler constant. The detailed development of Eq, (15} is given in the Appendix.
Utilizing the root test,” it can be shown that the series converges for all values of x.
For large x, the Watson lemma'® can be used to yield the asymptotic series
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The detailed development of Eq. {17) is also given in the Appendix.

4, NUMERICAL COMPUTATION
Numerical values for Sy{(x), Sx(x), and S;(x) are listed in Table 1. The results are accurate to
six significant figures. For 0 =<x =<2.0, Eq. (15) is utilized. For x =20, Eq. (17) is observed to be
accurate and has been used for numerical computation. For 2.0 <x <20, results are generated
by direct numerical integration of Eq. (11).

Table 1. Numerical values of $y(x}, §x{(x), and Si(x).

x sl(x) Sz(x) 53(:&)
2.0 1.0 0.636620 0.5
1.E~5 0.999920 0.636610 0.499994
1.E-3 0,994892 0.635622 0,499364
1.E-2 0.963578 0.626818 0,493683
8.1 D.782171 0.549058 0.440887
0.2 0.651685 0.477757 0. 389652
0.3 0.553116 0.417717 0. 344961
0.4 0.474411 0.366477 0.305817
0.5 0.409788 0.322368 0,271428
0.6 0. 355801 0. 284166 0.241146
0.7 {.310160 0.250930 0. 314430
0.8 0.271239 0,221810 0.190820
0.9 0.237828 0.1964%99 0,169927
1.0 0. 208994 0.174192 0.151417
2.0 6.18289E-2 5.44250E-2 4.89965E-2
5.0 2.17020E-3 2.02342E-3 1.90110E-3
7.0 2.54681E-4 2.41223E-4 2.2957BE-4
10.0 1.08322E-5 1. 039%8E-5 1.00129E-5
15.0 6.06368E-8 5.89126E-8 5.73220E-8
20.0 3.57068E-10 3.49175E-10 3.41767E-10
25.0 2.16404E-12 2.12490E-12 2.08774€-12
30.0 1.33616E-14 1.31571E-14 1.29614E-14
35.0 8.35821E-17 8. 24727E-17 8,14053€£-17
40.0 5.27901E-19 5.21717E-19 5.15740e-18
45.0 3.35904E-2) 3.32382E-21 3.28967E-21
50.0 2.14999E-23 2.12959E-23 2.10975€-23
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It is interesting to note that direct numerical integration by quadrature of Eqs. (10) and (11),
a procedure used in Refs. 3, 7, and 8, cannot yield accurate results in the optically thin limits
(small @ and x). This fact accounts for many of the difficultics encountered in existing
numerical solutions for two-dimensional radiative equilibrium. Equation (15) is accurate in the
limit of small x.
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APPENDIX
To derive Eq. (15), we consider the related function
v 2k
F= 5,6+ 32y Inx ) (2k ) (2%, L5 ag)

It can be shown that the infinite series in Eq. (18) converges for all values of x =0, Using Eqs. {(5)-(7), we find
-k
y (s )
kg (= 1 L
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r 2

To calculate F, %) for k= n, Eqs. (5)-(7) and (18) are first combined to

=0,1,..,n-1 (19)
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Ff(x)=(~1) —Ko(x)‘l‘—( 1" Zu( )(?2“)‘ (1 x+m=nm). (20)

Expanding Kofx) as a MacLaurin series, Eq. (20) becomes

. Iz!k
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Differentiating Eq. (21) successively and evaluating at x =0 yields

F"(2k+n+ll(0) =0, k=0,1,... (22)
and
(2k+a) ( )" o
+1 _ _

B0 = W( )(kbk+l+]n2+ 2 T 1)k 0,1,... 23)

The Maclaurin series of F.(x) is

= g 19

Fix)= an B0 2 (23)

Utilizing Egs. (19}, (22}, and (23), Eq, (]5) results,
Te develop Eq. (17) we set t = 1+ y%/2, Eq. (1) is then transformed to

—x o 2\ =n 2, =12
Sulx) = 25— fu e"”””(H%) (1+%) at. 26)
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Expanding the nonexponential part of the integral as a double series, Eq. (26) becomes

e S (_1)m+k(2m)("+k‘1 Jm — (122 +k)
si0~2 3 5 S )"y )Ue dt.

Integrating Eq. (27) and rearranging the indexes, Eq. (17) is obtained.
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