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Heat transfer by simultaneous conduction and radiation in an absorbing, emitting and
anisotropically-scattering material is investigated theoretically, Consideration is given

to a one-dimensional system bounded by two parallel gray, diffuse and isothermal wells,
Assuming a physical model of linear-anisotropic scattering, the resulting integral-differ-
ential equation is solved by a successive approximation technique similar to the method
of undetermined parameters. The solution method is demonstrated to be relatively simple

“and yields solution converging qucikly to the exact results. Results show that for the
present one-dimensional system, the common approach of treating the total heat transfer
as a simple addition of separete independent contributions from conduction and radia-
tion is quite inaccurate for certain cases. This approach is thus ineffective in illustrating
the general effect of scattering. Both the scattering albedo and the forward-backward
scattering parameters are shown to have some interesting effects on the total heat trans-
fer and the medium’s temperature, The magnitude of these effects depends on the surface
emissivity of the two boundaries.

Introduction

Heat transfer by simultaneous conduction and radiation between
two reflecting surfaces with an intervening medium capable of ab-
sorbing, emitting and scattering thermal radiation is a problem of
considerable practical importance. It serves as the basis, for example,
in the analysis of the thermal performance of porous insulating ma-
terials such as fibers, powders, foams and many others. A great deal
of work have been reported in this area [1-8}, but most of them have
only limited success largely because of the complexity of the
problem,

Mathematically, the problem of simultaneous conduction and ra-
idation is quite formidable as it involves the complex interaction
between the radiative properties of the boundary surface and the
thermal and optical properties of the material. The analysis requires
a difficult solution of a nenlinear integral-differential equation. Many
approximation methods have been proposed [1-4]. But nearly all of
these methods were successful only in generating limiting expressions
for the total heat flux. Few can predict the temperature profile ac-
curately and none of them consider the effects of anisotropic scat-
tering. Numerically, the only successful solution appears to be that
of Viskanta and Grosh [6, 7]. Using an iterative methed, they analyzed
numerically the problem of eombined conduction radiation in a
one-dimensional absorbing, emitting, ‘but nonscattering medium
bounded by two parallel gray isothermal surfaces. The effect of the
various system parameters on heat transfer were established and the
calculation was later generalized to include the effect of isctropic
scattering [8]. But the effect of anisotropic scattering is again ne-
glected. While it is well known that the scattering of thermal radiation
by real particles is by no means isotropic {9] and that anisotropic
scattering can play a significant role on the overall heat transfer, all
of the existing work on anisotropic-scatiering media [10-12] avoid
much of the mathematical complexities by considering only the effect
of radiative transfer. None of them consider the simultaneous effect
of eonduction,

The objective of the present work is to obtain accurate solutions
to the problem of simultaneous conduction and radiation in an ab-
sorbing emitting medium with anisotropic scattering. Assuming a
model of linear-anisotropic scattering, successive approximate solu-
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tions converging to the exact result are generated. The solution
method is similar to a technique which was utilized successfully in
some recent analyses of radiative transfer [10, 11]. Unlike those
analyses, the present method does not assume a differential formu-
lation for the radiative intensity. Instead, the governing integral-
differential equation is solved exactly. The difficult question con-
cerning the convergence of the differential formulation is thus
avoided. As in the previous approaches, the governing equation and
its associated boundary conditions are reduced to a set of nonlinear
algebraic equations at each step of the successive approximations.
Solutions are obtained quickly and efficiently by simple iterations. -
In the limit of pure radiation, the present technique is identical to the
method of undetermined parameters [5]. ‘

Results indicate clearly the effect of various system parameters on
the heat transfer and the temperature profile of the medium. The
common practice of treating the total heat transfer as a sum of sepa-
rate independent contributions from conduction and radiation is
demonstrated to be inappropriate except for some special limiting
situations. In general, scattering can have an important effect on the
total heat transfer and the medium’s temperature profile. In some
instances, differences between the anisotropic-scattering result and
the isotorpic-scattering result are quite significant.

Mathematical Formulation. The physical system chosen and
its associated coordinate system for the present analysis are identical
to those considered in references [11] and [12]. Utilizing the same set
of physical assumptions, the equation of transfer may be written as

i 1 1
;—:+ i= (1 — woiy +-‘§9 . id#+% f__l iwdp (1)
where ¢ denotes the radiation intensity, i, the blackbody intensity,
wy the single scattering albedo, x the forward-backward scattering
parameter, u = cos f and 7 is the optical thickness defined by

dr=f8dz (2)

with z being the axis of symmetry and 3 the extinction coefficient. For
combined conduction radiation, the energy equation is

d 1 dT| _H
a7 ﬁlapdu—Kﬁ&-}]—ﬁ 3)

where & is the thermal conductivity of the medium, T the temperature

dr
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and H is the internal heat generation rate.
Introducing the foliowing dimensionless variables:

5 dr*
- f Strx, wetr= & 1< <0 (108)
T B

T H ’
f=—,04= — I = __4 .G Equations (6, 9,.10a, 106) and the definition of & can be combined
Ty BoTi ol to give the following integral-differential equation for the dimen-
1 1 ; .
=9 J‘ I'Id'u’ Q=2 J‘ 1 Iude (4) sionless tempe:ature 6
] g4 — Ny ﬂ _l ! -J'" S{r*, we=tr=r"i
where T is the temperature of the lower wall and ¢ is the Stefan- 1—wedr2 2 -4 ’
Boltzmann constant, equations (1) and (3) can be written as ¥ dy
‘ dl worn Xdr* + f S(r*, —,u)e‘“""'f‘)dr*] -
#&-+1— 1-w0)64+—G+ Q (1e) T s
—L L L L
. R et
[Q—4N1 ]a* (3a) 24 2 ) 2
BH woﬂy L
where Ny = kf3/45T} is the familiar conduction-radiation param- + 4 + B(1 — wp) E, + Tt E2 4
eter. L
Equation (1a) ean be integrated over u to give + 22 l% - Ny (— Es|— + -r) —E; (-2— - —r)]
ldQ-l- SG=201 — )t + 226 (5) worth[ 2, L[,
2dr ‘ 2 +— 3 3 5 [*8

Together with equation (3a), the dimensionless average intensity G

can be expressed as

2
G =468 - [Bf; + 4N g—e-]/(l — wp) (6)
dr?

Assuming a constant heat generation rate, equation (3a) can be in-

tegrated over T to yield

dé df
= 4Ny —+ 847 — 4Ny || + 7
Q 4N1d7 04 1[d7]0 Qo (M

Utilizing equation (6) and (7), equation (1) becomes,

2 =S

dr
where
d% 0%
=4 — [0 |, &2 4 EH
S(T: F-) 3 (1 _ wo)( lde 4

a8 0

-i-wox,u.[N1—+——

d
Formally, the soluticn to equation (8) is

Ir=14 [_ %] el=(r+L/2}u}

dr#*
+ f_ ,i Str+, p)ef((r-f')fu>-;—. 0<p<1 (10a)

I_=1_ [.L_') e—(r—Lﬁ/.u)
2

Nomenclature

8

L
+ E3 (E— TH + Ey (%4‘ T) + Ey (% — T)] (11)
where E, (x) is the exponential-integral fl'mction defined by

1
E,.(x)=.r ur—2e—xlndy
o

(12)

Utilizing equations (10a) and (10b) again, the constant 8g, J +(—L/2)
and f_(L/2) in equation (11) can be expressed in terms of § as

-
e B S

1[ po L
+ 2 * ™/ * — * —r*fud %
J; [J‘_%S(r , mletedr J; S{r*, —ule—udr*]dp

8 o

(13)

I (—— [1~ 4(1 — &)(1 - ) E3(L)]

=&+ 2(1—¢) lezEa(L)H‘E

L
1
+ J; J:; [S(‘r*, — p)e—Li2—*u

+ 2(1 — €2)8{7*, ,Lt)e"“'m"‘")""] d'r*d,u] (14}

A, = expansion coefficient defined by
equation (19)

B, = expansion coefficient defined by
equation (20)

d = thickness of the one-dimensional slab

G = dimenhsionless average intensity defined
by equation (4)

Exy = exponential function defined by
equation (12)

H = internal heat generation rate

{ = radiative intensity

ip = blackbody intensity

I = dimensionless radiative intensity defined
by equation (4)

o = Jacobian matrix

k = thermal conductivity
L=§d

304 / VOL. 102, MAY 1880

M, = new conduction-radiation parameters
N{/L2

N1 = conduction-radiation parameter, k3/4
T8

@ = dimensionless radiative heat flux defined
by equation (4)

Qo =R evaluatedat 7 =0

@: = total heat flux defined by equation
(22)

S = source function defined by equatlon
9

T = temperature

T, = temperature of the lower wall
= forward-backward scattering param-
eter

X;j = matrix element defined in equation
(21

Y;; = matrix element defined in equation
(21)

Z; = vector defined in equation (21)

z = gpacial coordinate

B = extinction coefficient

€ = surface emissivity :

# = dimensionless temperature, T/T

On = 8 evaluated at
= H/BeTy?

fo=68atr=0

#l» = dimensionless upper wall temperature

n=cosf

7 = optical thickness defined by equation
(2)

wp = scattering albedo
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L (%) [1- 401 — (1 - ) E31)]

e+ 21— ez)|elEs(L)63

L
1 2

—(Lf24 7%,

+j; f_% [S(r*, we Vu

+2(1 — e)S(r%, —u)e“m"")"“] d’r*d,u} (15)

The boundary conditions for § are

oGl

Equations (11) and (13-15) constitute a complete mathematical de-
scription for the present one-dimensional preblem.

Method of Solution. Analytical solution to equations (11) and
(16} are clearly impossible to obtain, Numerically, Viskanta [6-8] had
demonstrated that for cases with no-scattering or isotropic scattering,
solutions can be generated by a direct iterative method. While this
same technique will probably be effectiva also for the case with an-
isotropic scattering, the present work chooses to use a different so-
lution procedure. Unlike the iterative method, each solution in the
present successive approximation series is developed independently.
At each step of the approximation, equation (11) is reduced to a set
of finite non-linear algebraic equations which can be readily solved.
In contrast to the direct iterative method, the present method has the
advantages that it is mathematically simple and solutions generated
converge quickly independent of values of the various system pa-
rameters.

Mathematically, the present solution method is based on a simple
observation that if 8 and 4 are expressed as power series, the various
integrals appeared in equations (11) and (14-15) can be carried out
analytically in terms of the exponential integral function. Evaluating
equation (11) at different values of T, a system of algebraic equations
can be generated to determine the unknown expansion parameters.
From a computational point of view, these equations will have the
same degree of complexity as a finite-difference formulaticn of a
nonlinear ordinary differential equation. They can thus be readily
solved. ’

In the Jth approximation, the unknown parameters are assumed
to be the temperature at 2J + 1 distinct locations in the medium as
follows:

(18)

O = B(7m) (17)

where
__mL
2(J+1)

In terms of the v ’s, the temperature profile is expanded as a (2.7 +
3) term power series. This gives

m=0,x1,...,&J (18)

Tm

2/ +2
8= 3 A"

n=0

(19)

Evaluating equation (19) at rn,’s and at the two boundaries, the
coefficients A,’s can be expressed as linear functions of m's. In 2
similar manner, 04 is approximated by

2J
4= 3 B,rn

n=0

(20}

But unlike equation (19), equation (20} is not required to satisfy the
noslip temperature boundary conditions. Results show that this re-
laxing of the temperature boundary condition for §4 greatly improves
the accuracy of the solution for the lower order approximation. This
is not surprising because in the limit of a large radiative effect, a 64
distribution which satisfies the no-slip temperature boundary con-
dition will always yield an inaccurate radiative heat flux prediction
in the optically thin limit. In the higher order approximation (f —
«), equations (19) and {20) clearly reduce to two consistent relations.
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By assuming & and 8% to be separate power series, the present work
also reduces greatly the complexity of the computation since only 8.,
and 0,,* will appear in the final matrix equation. If only equation (18)
is utilized, all possible products of 7,,"s up to the fourth power will
appear. In all considered cases, the accuracy of the solution generated
by the present method is better than or at least equal to those gen-*
erated by assuming a simple power series for # and 8. The computa-
tional time is always much less.

Substituting equations (19) and (20) into equation (11) and eval-
uated at 7,'s, a nonlinear matrix equation of the following general
form results.

X1 ee Xizo+1 o

be

KXoz e 241,201

Yi20n1 ]

4
Yari1,1 YI+1,20+1 62s

(21)

The solution can be generated by any common iterative technique. |
Results and Discussion. Because of the large number of physical
parameters involved even for a simple one-dimensional problem, the
present consideration will be limited to those cases with ¢; = e2 = ¢,
Bx = 0 and 82 = 0.5. It is recognized that situations with ¢; = ¢ and
other values of &2 and 8y can differ significantly from those considered
in the present work. They will be investigated in the future,
Results show that the present solution method yields converging
resulis very quickly. At each step of the successive approximations
no more than 4 iterations are required for the solution of the non-
linear matrix. The number of iterations required for the higher-order
approximation is even less since the previous-order result, which is
already quite accurate, can be used as an initial guess. The successive
approximation is carried out until two consecutive approximate so-
lutions differ by less than 0.001 both in its prediction for the tem-
perature profile and the radiative heat flux. In all considered cases,
the above convergence criteria is achieved at no‘higher then the
sixth-order approximation. Tables 1 and 2 illustrate the rate of con-
vergence of the temperature profile for two typical cases. It is inter-
esting to note the first-order result, which is generated by the solution
of asimple 3 X 3 nonlinear matrix, already yields a resonably accurate
deseription of the medium’s temperature. The heat flux prediction
is also quite satisfactory and superior to the common approach which
treats the total heat flux as a sum of separate independent contribu-
tions from conduction and radiation, Utilizing a recently developed
closed-form approximation for pure radiative transfer in an aniso-
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Table 1 The first six-order approximate temperature
profile 8 with N; =001, L=1.0,¢, = e2=05and w; =0

/L 1st 2nd 3rd 4th 5th 6th
0.5 0.500 0.500 0.500 0.500 0.500 0.500
0.3  0.756 0.769 0.769 0.771 0.773  0.773
0.1 0,827 0,818 0.819 0.820 0.822 0.822
0.0 0835 0.832 0.833 0.835 0.836 0.837

-0.1 0.842 0.845 0.846 0.848 0.849  0.849
-0.3 0.886 0.874 0.874 0.876 0.877  0.878
—0.5 1000 1.000 1.000 1.000 1.000  1.000

tropically-scattering medium, the addition-solution suggesis the .

following expression for the total heat flux

1-64

4N
Q=—"(1=0)+ (22)
L 2 3 wor

2 1+ (- _e
€ 4 4

A direct comparison between the first-order results, equation (22) and
the higher order exact results obtained in the present work is shown
in Table 3. It is apparent that the error of equation (22) can be quite
substantial, particularly for cases with scattering and small emis-
sivity.

Table 3 also shows that the present exact results differ slightly from
the previously reported numerical results [7]. The discrepancy is not
too unexpected since the previous computation was done nearly 20
years ago with a small IBM 650 computer [14). The computer was slow
and had a small core. Experience in the present caleulation indicates
that the accuracy of the exponential integral function. In a pure nu-
merical computation with a small computer, slight error in the ex-
ponential integral function and conséquently in the result of the
calculation can be readily generated. The present work, on the other
hand, utilizes a much larger and more efficient IBM 360 computer.
All exponential integral functions are tabulated exactly up to eight
significant figures using known analytical expressions and serves as
the input of the calculation. The result should thus be more aceurate
and reliable:

The effect of the scattering albedo wg and the forward-backward
scattering parameter x on the medium’s temperature profile is illus-
trated by Fig. 1, in which results of the temperature profiles for cases
with L = 1.0, ¢ = 1.0 and various values of N1, wg and x are presented.
It readily demonstrates that scattering can have a significant effect
on the medium’s temperature. When wg = 0, the medium only absorbs
and emits radiation. The interaction of conduction and radiation
causes the temperature to rise above that of the pure conduction case.
When wp = 1.0, the medium only scatters and does not either absorb
or emit radiation. The temperature profile becomes linear. For in-
termediate values of wq, the temperature profile falls between the
above two extreme cases. For Ny = 0.1, the value of x has only a minor
effect on the medium’s temperature. As Ny decreases, the effect of
anisotropic scattering increases and is at a maximum at Ny =0, As
expected, a strong forward scattering {x = 1.0) leads to an increase
of the temperature near the cold wall and a decrease of the tempera-
ture near the hot wall. The opposite trend is chserved for media with
a strong backward scattering (x = —1.0). In all cases, the effect of
is quite negligible compared to the effect of wo.

The effect of scattering on heat transfer is illustrated by results
presented in Tables 4 and 5. For the scattering albedo twy, its effect
on heat transfer is most significant for systems with small Ny and
small surface emissivities. At Ny = 0.01, ¢ = 0.1 and L = 1.0, for ex-
ample, the heat transfer result with wy = 1.0 represents a nearly 50
percent reduction from the result with wp = 0. At ¢ = 1.0, on the other
hand, the maximum variation of the total heat flux as ¢ is changed
from 0 to 1.0 is less than 10 percent. Unlike its almost negligible effect
on the medium’s temperature, the forward-backward scattering pa-
rameter also has a noticable effect on the heat transfer, But in contrast
to the effect of wg, the effect of x is large for systems with large surface
emissivity. At e = 1.0, N; = 0.1, L = 1.0 and wg = 0.5, for example, the
total heat transfer in a strongly backward-scattering medium (x =
=1.0) is about 10 percent less than that in a strongly forward-scat-
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Table 2 The first five-order approximate temperature
prof{lg & with N1 =10, L =100, ¢; = €3 = 1.0, wg = 0.5 and
X =1 u N

T/L 1st” 2nd 3rd 4th 5th
0.5 0.500 0.500 0.500 0.500 0.500
0.3 0.631 0.632 0.632 0.632 0.632
0.1 0.744 0.743 0.743 0.743 0.743
0.0 0.794 0.792 0.792 0.792 0.792

-0.1 0.840 0.838 0.837 0.837 0.837

-0.3 0.924 0.920 (.919 0.918 0.918

0.5 1.000 1.000 1.000 1.000 1.000

Table_ 3 Comparison between the first-order result,
equation (22), and the higher-order exact result. Values
in parenthesis are numerical results reported in refer-
ence [6] (L =1)

First-order
results equation
Ny wo x (22) Exact
€=10 €=01 ¢=10 ¢=01 =10 e=0.1
2572 2.221
0 2,569 2,202 2536 2047 (2.600) (2.245)
1.0 1.0 2592 2149 2577 2048 2594 2,157
05 0 2549 2145 2536 2.047 2550 2,154
—1.0 2511 2142 2500 2047 2512 2.150
0.769 0.402
0 0.765 0371 0.738 0.247 (0.798) (0.393)
0.1 1.0 0.792 0335 0977 0.248  0.793 0.349
05 0 0748 0333 0736 0.247 0.750 0.346
=10 0.711 0330 0.700 0.247 0712 0.343
1.0 I T | | T I 1 I T
N; =00 { o
09 w=05 x=1 ]
0.8 ]
~
8 N
o7 1
w=1.0
N, =0.! {w=0.5 (x=-1,0,+)
w=0.0
o1 -1
05 ] | | | ] | | | {
-0.5 -03 . -0l o Ot 03 0.5
T/L
Fig. 1 The effect of anisotropic scattering on the medium’s temperature with
L=10ande¢= 1.0

tering medium (x = 1.0). At ¢ = 0.1, however, the effect of x is almost
negligible. At L = 10.0, the effect of wp and x on the heat transfer re-
sults follows a similar pattern.

Physically, the above effect of wy and x on the total heat transfer
is not difficult to understand. For systems with small surface emis-
sivity, energy leaving the hot bottom wall must travel many times
across the medium before it is totally absorbed. There is an effective
increase in the optical thickness. The effect of scattering is multiplied
and thus becomes more apparent. The effect of wg is therefore large
for systems with small surface emissivity. But the multiple reflections
by the two boundaries also cause a given ray of radiative energy to
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Table 4 Effect of system parameters on the heat
transfer result with L = 1.0

Table 5 Effect of system parameters on the heat
transfer result with I = 10.0

N1 €1 == 1.0 €1 = 62=0.1 M1 _61‘= €2=1.0 €1=62=0.1
wy X 1.0 0.1 0.01 1.0 0.1 0.01 wp X Lo 0.1 0.01 1.0 0.1 0.01
0 0 2572 0769  0.567 2,221 0.403  0.158 0 0 20115 2115 0316 20105 2106 0.305
1.0 2594 0793  0.600 2,157 0.34% 0.131 1.0 20184 2134 0335 20118 2118 0.316
06 0 2550 0750 0.569 2154  (0.346  0.130 05 0 20,114 2114 0314 20100 2.101 0.299
-~10 2512 0712 0523 2.150  0.343 (.129 —-L0 20,099 20908 0.299 20.088 2.088 0.287
10 2602 0.802 0622 2043 0.248 0,068 1.0 20.155 2155 0355 20.039 2.039 0.239
¢ 0 2519  0.71% 0539  2.047 0.247  0.067 10 0O 20.110 2110 0.310 20.035 2035 0.235
—1.0 2466 0656 0476  2.047 0.247 0,087 —1.0 20085 2,085 0.285 20,032 2.032 0.232

totally change its direction repeatedly. After many reflections, the
energy ray effectively “loses its sense of direction.” The anisotropic
effect of the scattering process becomes randomzied. The forward-
backward scattering parameter x thus has only a relatively minor
effect for systems with small surface emissivity.

Finally, it is interesting to note that for anisotropic-scattering
media, an increase in the scattering albedo wp does not necessarily lead
to a reduction on the total heat transfer as it was suggested by the
existing isotropic-scattering result [8] and confirmed by results shown
in Tables 4 and 5 with x = 0. For many cases with x = 0, the total heat
flux for a scattering medium (wp  0) is actually greater than that of
the corresponding nonscattering case (wp = 0). For cases considered
in the present work, this unexpected behavior of anisotropic-scat-
tering on heat transfer appears for systems with ¢ = 1.0. Physically,
this phenomenon can be explained by noting that a strong forward-
scattering (x = 1.0) generally increases heat transfer. For systems with
large surface emissivity in which the overall effect of wq is small, the
increase in heat transfer due to forward-scattering may, in some in-
stances, be large enough to cause a net increase in the overall heat
transfer, This rather “abnormal” effect of scattering does not appear
for systems with ¢ = 1. For those systems, the drop of the heat transfer
due to the increase in wy is large enough that even when x = 1.0, the
heat transfer is less than that of the pure absorption case.

Concluding Remarks. The problem of simultaneous conduction
and radiation through absorbing, emitting and anisotropically-seat-
tering material is considered. The problem is solved by a successive
approximation technique similar to the tradiational method of un-
determined parameter. The conclusions that may be drawn from the
presetn study are as follows:

1 The temperature profile of an anisotropically-scattering me-
dium depends a great deal on the scattering albedo wq. The for-
ward-backward scattering parameter x has only a minor effect on the
medium’s temperature.

2 Bothwpand x have important effects on the total heat transfer.
The realtive importance of these effects depend on the surface
emissivity of the boundaries. When ¢ is small, wp has a significant
effect on heat transfer and the effect of x is relatively unimportant.
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Scattering generally decreases heat transfer. When ¢ is large, on the
other hand, the effect of wy on the heat transfer is small and the effect
of x becomes significant. The net heat transfer in a scattering medium
can be greater or smaller than that of the pure absorption case de-
pending on the value of x.
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