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Analysis of Combined
Conductive-Radiative Heat
Transfer in a Two-Dimensional
Rectangular Enclosure With a Gray
Medium

Combined conductive-radiative heat transfer in a two-dimensional enclosure is con-
sidered. The numerical procedure is based on a combination of two previous tech-
niques that have been demonstrated to be successful for a two-dimensional pure
radiation problem and a one-dimensional combined conductive-radiative heat
transfer problem, respectively. Both temperature profile and heat transfer distriby-
tions are generated efficiently and accurately. Numerical data are presented to serve
as benchmark solutions for two-dimensional combined conductive-radiative heat
transfer. The accuracy of two commonly used approximation procedures for
multidimensional combined conductive-radiative heat transfer is assessed, The ad-
ditive solution, which is effective in generating approximation to one-dimensional
combined conductive-radiative heat transfer, appears to be an acceptable empirical
approach in estimating heat transfer in the present two-dimensional problem. The
diffusion approximation, on the other hand, is shown to be generally inaccurate.
For all optical thicknesses and conduction-radiation parameters considered
(including the optically thick limit), the diffusion approximation is shown to yield

significant errors in both the temperature and heat flux predictions.

1 Introdnection

Combined conductive-radiative heat transfer in a
multidimensional enclosure is a problem of considerable prac-
tical importance. Until now, most of the reported work in this
area has been confined to either combined conduction-radia-
tion in a one-dimensional planar system (Viskanta and Grosh,
1962; Einstein, 1963; Yuen and Wong, 1980) or pure radiation
in multidimensional systems {Glatt and Qlfe, 1973; Modest,
1975; Ratzel and Howell, 1982; Yeun and Wong, 1984). A
series of recent works by Howell et al. {1982, 1984, 1985) ap-
pears to contain the only reported solutions in the literature
that deal with the combined conductive-radiative heat transfer
in a system with multidimensional geometry.

Fundamentally, the difficulty associated with multidimen-
sional combined conductive-radiative heat transfer lies in its
extreme mathematical complexity. The energy balance equa-
tion is a highly nonlinear partial differential integral equation.
While exact analytical solutions are practically impossible to
obtain, numerical solutions are difficult and time consuming.
Numerical results presented by Razzaque et al. (1984), for ex-
ample, are mainly those with moderate or large values of the
conduction-radiation parameter (N, =0.05). For cases with
low values of the conduction-radiation parameter, the authors
noted that **the method requires a substantial amount of com-
puter time to achieve convergence.”’

In a recent series of works by Yuen et al. (1984a, 1984b,
1985), a nurerical technique was developed for two-
dimensional pure radiation problems. Utilizing tabulated
values of a class of generalized exponential integral function,
Sy (x}, numerical results were generated accurately and effi-
ciently (cpu time on an 11/780 Vax computer for a typical
two-dimensional pure radiation calculation is less than 1 min).
In another work on one-dimensional combined conductive-
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radiative heat transfer (Yuen and Wong, 1980), an iterative
procedure, in which the blackbody emissive power is not re-
quired to satisfy the no-slip condition at the boundary, was
shown to be effective in solving the highly nonlinear differen-
tial integral governing equation. The objective of the present
work is to demonstrate that the same numerical technique and
iteration procedure are also effective in analyzing two-
dimensional combined conductive-radiative heat transfer
problems. Based on numerical results, the general
characteristics of two-dimensional combined conduc-
tive-radiative heat transfer are discussed.

It is important to note that due to the mathematical com-
plexity associated with radiation, some approximate pro-
cedures are probably necessary for analysis of combined con-
ductive-radiative heat transfer in practical engineering
systems. Until now, development of such approximation
methods has been difficuit because of the lack of an available
numerical **benchmark’’ solution. As is illustrated in the later
sections, numerical results generated in the present work are
accurate. In addition to illustrating the important physics of
combined conductive-radiative heat transfer, these results can
serve as a valuable basis for such development. Specifically,
the additive solution, which has been shown to be quite ac-
curate for one-dimensional combined conductive-radiative
heat transfer (Einstein, 1963; Yuen and Wong, 1980), is
demonstrated to be also an accurate empirical procedure to
determine two-dimensional combined conductive-radiative
heat transfer. The diffusion approximation, which is still one
of the common techniques utilized by industries in estimating
the effect of radiative heat transfer in practical engineering
systems, is shown to be highly inaccurate for two-dimensional
problems. For all optical thicknesses and conduction-radia-
tion parameters considered, the diffusion approximation is
shown to yield significant errors in both the temperature and
heat flux predictions.
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Fig. 1 Geometry and coordinate system for the two.dimensionai
enclosure

2 Mathematical Formulation

2(a) Basic Equations. Consider a rectangular enclosure
with an associated coordinate system as shown in Fig. 1. The
governing equation for combined conductive-radiative heat
transfer is well known. For an enclosure with black wails and a
nonscattering medium with constant properties and no inter-
nal heat generation, it can be written as
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Fig.2 Domain of integration and the “polar” coordinate used in equa.
tion (5)

Ly=a¥, L,=aZ (2¢)
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with 8, =T,/T, and T, and T, being the temperature of the
lower wali and the remaining boundary, respectively. N, is the
familiar conduction-radiation parameter with k and a being
the thermal conductivity and absorption coefficient of he

1 1
+I LZE 3‘ F(n', 1) M dn'dt’ (1) medium, respectively. The functions S, (x) and S,(x) belong to
o Jo dy aclass of generalized exponential integral function defined by
' S.(d 2 = et
=4F—L,L2(1-—:?‘2‘)§'L -% dy’ S, (x}= — jl TE-DE (3)
where This function has been studied extensively and applied suc-
_ , 2 cessfully to solutions of two-dimensional pure radiation
do=[Litn—n")* + L3¢ - £ )" (2a) problems in previous works by Yuen et al, (1984a, 1984b,
dy=[Lilg—y' Y+ Li21" (2b)  1985). The boundary conditions for equation (1) are
= i, F=0—#¢ (20) 96, 0 = 1.0
n ~ 3(n, 1) = 9, @
ka 90, 1) = 9,
Ni= s (2d) -
oT 3 9, =96,
Nomenclature
a = absorption coefficient
Ay = coefficient defined by ¢, = heat flux calculated by a
equation (9) pure radiation analysis
B; ; = coefficient defined by r = radial coordinate, Fig. 2 { = dimensionless coordinate
equation (9) S, = general exponential in- in the z direction, equa-
dy = optical distance, equation tegral function, equation tion (2/)
(2a) (3) 1 = dimensionless coordinate
d; = optical distance, equation T, = temperature of the hot in the y direction, equa-
2b) lower wall tion (2f)
F = dimensionless emissive T, = temperature of the cold ¢ = dimensionless
power, equation (2¢) wall temperature, equation
& = thermal conductivity ¥ = coordinate, Fig. I (2c)
L, = optical thickness in the y Y = dimension of the 3, = T,/T,
direction, equation (2e) enclosure, Fig. 1 ¢ = Stefan-Boltzmann
L, = optical thickness in the z z = coordinate, Fig. 1 constant
direction, equation (2e) Z = dimension of the » = angular coordinate, Fig.
Ny = conduction-radiation enclosure, Fig. 1 2
parameter, equation (2d) B. = dimensionless @) = angle parameter, equa-
g, = heat flux calculated by temperature gradient tion (6a)
the additive solution, alculated by a pure con- @, = angle parameter, equa-
equation (10) Juction analysis tion (68)
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As in previous analyses for two-dimensional pure radiation
problems utilized by Yuen et al. (1984a, 1984b, [985), the in-
tegrals appearing in equation (I} are reformulated, for con-
venience, in terms of a “polar’’ coordinate as shown in Fig. 2.
Equation (1) becomes

AN, 3¢ 4N, 39
T + el
2 oy I ¢

+ “(r. ” F(n+ —;— oS @, £+ ; sin :p)S, (rydrde (5)

1 2

¥2
=4F— (1 — 9% L Sa(L,T sec p)dy
1

with
L
- -1 17
@, =tan T (6a)
Li{1-7)
=tan—! 2 Y 6b)
@2 Lt (

2(b} Numerical Procedure. Solutions to equation (5) are
generated numerically by finite difference. Specifically, the
medium is first divided into an M|, x M, interior grid such that
the coordinate of each interior grid point is given by

1h.=f67], i=l,...,M1 (7&')
1
dn=
M +1
G=ist,  J=1,... .M, (76)
1
5 =
£ M,+1

Equation (5) is then evaluated at the M, x M, grid points to
generate a set of M| M, equations for the MM, unknown
temperatures and emissive powers.

Based on a usual Taylor-series expansion of the dimen-
sionless temperature #, the conduction term in equation (5)
can be written as

4N, D AN, 8%
L2 oy LI a7
AN, Oy + 80— 20

= : 8
L ANy B 4D =28
L3 82

Utilizing a linearized distribution of F within each rectangular
element as in Yuen and Ho (1985), the radiation term becomes

r ro.
SS(.—,,:) F(g; + L_[ cos g, [;+ 7.: sin )8, (r)drde

L)
+(1— 94 SW Sy (Lyf; sec p)dp ()
ma=M
= Ai. j,m.nFm.n +Bi,j
man=1

The coefficients B;; and A, ;,, are identical to those
generated in the appendix of the previous work (Yuen and Ho,
1985). They are, in general, functions of geometry only and
can be readily evaluated based on tabulated values of S, (x).
A set of coefficients, similar to 4, ,, ,, must also be tabulated
for the evaluation of radiative heat flux. For a typical calcula-
tion (L =L, =1, M, =M, =10), the ¢pu time required for the
evaluation of these coefficients is less than 3 min on a 11/780
Vax computer,
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Note that in the development of equation (9), the value of F
at the boundary is generated by linear interpolation of its
values at the two closest grid points in the direction normal to
the boundary. It thus does not satisfy the no-slip temperature
boundary condition. Since the function F has, in general, a
much steeper gradient near the boundary than the function 4,
a linear approximation for F that does not satisfy the
temperature boundary condition yields a better approximation
of the radiative contribution to the energy balance, Numerical
experiments show that this greatly increases the accuracy of
the result, particularly for cases with relatively large grid sizes.

Numerical solutions to equation (5) are generated by itera-
tion. In contrast to many existing works on combined conduc-
tive-radiative heat transfer, the present work utilizes different
iteration procedures depending on the value of the conduc-
tion-radiation parameter, {n the limit of large V,, the conduc-
tion term is expected to have the most significant influence on
the temperature distribution. Sclutions are generated by a
conductive iteration in which, at each step of the iteration, the
radiative term is evaluated using the temperature distribution
calculated at the previous iteration step and considered as a
source term. The new temperature distribution is then deter-
mined by a matrix inversion of the conduction term. In the
limit of small N,, on the other hand, the effect of radiation is
expected to dominate. The emissive power distribution is
determined by a radiative iteration in which the conduction
term is evaluated using the emissive power determined by the
previous iterative step and considered as a source term. The
new emissive power distribution is generated by a matrix in-
version of the radiative term. For all cases considered, one or
both of the above iteration techniques are effective in
generating numerical solutions efficiently. For cases with

Table 1 Maximum vaiue of A, 4, , and A4, in percent along the

horlzontal and vertical centerlines between the 11x11 and 21 x 21
calcufations for a square enclosure with various values of Ly and Ny

Ly=Ls N, =10 01 001 -0.001
|
0.1 Ay 0.16 018 0.14 0.09 |
by, LS7 140 084 061 1|
|
ll ¢ 385 2036 043 033 |
| 05 4, 0.15 012 0.08 0.42 i
|
&, L47 126 185 082
A, 312 076 112 050
1.0 A, 015 009 019 035
8, 138 205 240 107
&, 261 107 153 0.64
20 A, 012 005 012 0.4
B, 129 261 195 la4
4, 217 128 189 0.89
50 A, 041 008 055 0.53
A, 288 340 477 490
b, 288 340 612 367
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Table 2(a) #{0.5, {} and q{0.5, ;} for square enclosures with
L =Ly =0.1 and various values of N,

[ W, ¢=10 0.7 0.5 0.3 0.0 |
. 10 $-0500 0560 0625 0733 1.000%
| ge=7473 10795 17.369 28.074 41.144 5
rm £=0500 0561 0.626 0.733 1.005;
! g¢= 1100 L1542 2305  3.503 4.932i
| 001 @=0500 0567 06833 0738 1.000
' gc=0462 0616 0798 1646 1311
0.001 =0500 0.615 0.680 0.766 1.000
gc=0.398 0.52¢ 0.648 0801 0.949

Table 2{b} 0.5, 3 and qr(D.S, ) for square snclosures with
Ly =Lg =1.0 and various values of Ny

N, ¢=10 07 05 03 GO
1.0 ¢=0500 O0.564 0.830 0.737 1.000
! ge=0927 1352 2112 3315 4.701
E 0.1 #=0500 0588 0661 0.763 1.000{
; g, =0.28% 0430 0609 0.860 1.083 i
o0t ¢ =0500 0653 0726 0.807 1.000)
ge=0.222 0344 0463 0610 0.730
0.001 ¢=0500 0.685 0.736 0794 1.000
g, =0.226 0.322 0.423 0.558 0.722

Table 2(c} «{0.5, {} and q(0.5, {} for square enclosures with
Ly =Lz =5.0 and various values of N4

N, £=10 07 05 03 00
(10 =050 0567 0640 0755 1000
i g¢=0173 0.298 0.514 0858 1034

01  £=0500 0585 0.689 0.834 1.000
| gr=0039 0.130 0.257 0.408 0.253 :
| 0.0l ¢ =0500 0.658 0.732 0.8i4 1.000]

g,=0.068 0.111 0.165 0.245 0.388
0.001 =0500 0.665 0.738 0.817 1.000
g, =007l 0.110 0.161 0238 0.380

#,=0.5 and L, =L, =1.0, for example, the conductive itera-
tion is effective in generating solutions with N, =0.02 while
the radiative iteration is effective when N, =0.01. Using
pretabulated values for the coefficients A; ;. . and B, ;, sach
iterative calculation requires less than 3 min of cpu time on an

11/780 Vax computer.
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Table 2{d) {y, 0.5), q,r(q, 0.5), and qr(rj, 0.5) for square enciosures with

Ly =Ly =01 and various values of N

Ny n=06 08 10}

,

L0 ¥=0620 0577 0500

go= 16819 11800  0.395|
| gn=4347 12.619 16.839
. 0.1 »=0621  0.578  0.500
l[ g, =2241 1668  0.395
| gn=0.494 1431  1.919
0.01 p=0628 0.583 0.500
g, =0783  0.685 0.395
g,=0.109 0312 0.427
0.001 ¢=0674 0620 0.500
g, =0638 0554 0.395
g, =0.070  0.200  0.277

Table 2{8) «{y, 0.5), ¢,(z, 0.5), and q,(z, 0.5) for square enclosures with

Ly =Ly =1.0 and various values of N

N, n=06 08 1.0
1.0 ¢ =0.624 0.580 0.500
g, = 2050 1.489 0.238
gn=0.491 1.422 1.898
0.1 9 =0654 0.603 0.500
g¢=0.595 0478 0.240
gn=0.107 0.305 0.404
0.0 ¢=0721 0.669 0.500
g, =0.454 0381 0.245
g, =0.070 0.185 0.250
0.001 ¢=0.733 0711 0.500
g, = 0416 0357 0.242
gnp=0.059 0.171 0.243

3 Results and Discussion

3(g2) Numerical Accuracy.

Numerical results show that ex-

cept for regions near the two lower corners at wlzich the
boundary condition is singular, solutions converge rapidly. To
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Table 2{f) {y, 0.5), q.,(r;, 0.5}, and qg.(r;, 0.5) for square enclosures with
Ly =4y =5.0 and various values ol N,

N, 7=08 08 L0 |

1.0 ¢=0634 058 0.500

| g, =0.498 0344 0.039
| g, =0.125 0344 0.418
0.1 =068 0614 0500
g, =0.245 0.164¢ 0.048

4, =0.059 0.137 0.113

0.01 =078 0692 0.500
g, =0.161 0.129 0.061
4p=0.034 0099 0.149

0.001 @ =0.734 0.700 0.500
q,=0.158 0.128 0.063
g,=0032 0095 0.153

illustrate the numerical accuracy, predictions of the dimen-
sionless temperature and heat fluxes along the vertical and
horizontal centerline, (#=0.5, {} and (3, {=0.5), for a square
enclosure (L,=UL,) generated by an 11x11 calcuiation
{6 =8¢r=0.1) are compared with those generated by a 21 x 21
calculation (6n=4¢=0.05). As a quantitative indicator of the
accuracy of the calculation, the relative error of a parameter f
(which can be either o, gq,, or g;) is introduced as

fllxll _f21>c2l
fllxll

The maximum values of 4, Ay, and A , along the two center
lines for different optical thicknesses and conduction-radia-
tion parameters are tabulated and presented in Table 1. The
dimensionless temperature ¢ is accurate to within 1 percent for
all cases while somewhat higher errors (5 and 6 percent,
respectively) are observed for ¢, and q;- The accuracy of the
solution improves as N, decreases. For the pure radiation
results, ¢, g,, and g, are all accurate (in the whole enclosure
including regions near the two corners) to within ! percent.
Physically, these results indicate that radiative transfer is not
very sensitive to the localized temperature distribution. Ac-
curate solution can be generated with z relatively *‘coarse”
I1x11 grid. Because of its relative accuracy, the present
numerical data can serve as reference “‘benchmark?®’ solutions
for future development of approximation techniques for
multidimensional combined mode heat transfer. They are
presented in Tables 2(a-f).

For enclosures with L,/L, less than one, numerical ex-
periments show that results generated by an 11 x 11 calcula-
tion are of the same order of accuracy as those presented in
Tables 2(a-f). For cases with L,/L, greater than one, addi-
tional grid points in the vertical direction are required because
a larger fraction of the enclosed medium is away from the
heating surface. In general, results with a relative accuracy of
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Table 3 Nondimensional heat flux distribution at different walls with
Li=Ls=10

| Nondimensional Bottom(hot) wall nondimensional heat flux

N,=z0:

position n Ny=10 N =01 ¥ =001 N =000! :
1 i
0.1 11018 1817 omes |, 0.792 0.778 |
i 0.3 3.645 1,195 0.758 0.735 0.729 i
l 0.5 4.701 1.083 0.730¢ 0.722 0.716 :
. |
| Nondimensional Side{coid) wall nondimensional heat flux !
! position ¢ Ny=10 ¥ =01 ¥ =001 N =0D01 N =0,

0.1 13250 1.452 G.581 0.494¢ 0.467

0.3 3.918 0.698 0.373 0.345 0.344

0.5 1.888 0.404 0.250 0.243 0,244

Q.7 0.517 0.233 0.163 0.168 0.170

0.9 0.308 0.110 0.096 0,108 0.112

Nondimensional Top{cold) wall nendimensional heat flux

pasition i N=2L0 My=01 Ny=0OL N =0001 Ny=0

0.t 0.373 0.176 0.163 0.175 0.178

0.3 0.778 - 0.260 0.207 0.213 0.218

0.5 0.927 0.289 a.222 0.228 0.228

Totat nondimensional heat fluxes

Ny=1L0 Ny =0t Ny=001 N =0001L N;=0

Bottorn wall 3.157 0.649 0.398 0.379 0.375

Side wall 2924 0.518 0.289 0.274 0.274

Top wall 0.318 0.114 0.095 0.099 0.101

% error 0.54 2.52 3.54 1.83 Q.00

5 percent can be obtained provided the dimensionless grid size
in the direction of smaller optical thickness is taken to be 0.1
or less and the optical distance between grid points in the two
direction are equal (i.e., L6y =L,8¢).

To demonstrate the heat transfer characteristics and to il-
lustrate further the accuracy of the numerical results, heat flux
distributions at the bottom, top, and side boundaries, together
with the overall energy balance for enclosures with £,
L, =1.0, 0.5, are presented in Tables 3, 4, and 5. It can be
readily observed that in all cases overall energy balance is
achieved to within 4 percent. In general, the accuracy of the
heat flux prediction is equivalent to a similar pure-conduction
calculation utilizing an 11 x 11 grid. Indeed, it is interesting to
note that the general overall accuracy of the computation ap-
pears to depend on the finite difference approximation of the
conduction term. The radiative term, based on the present for-
mulation, is extremely accurate. Additional numerical data
for both temperature and heat flux distribution (with L,
Ly~ 1, 0.5, 1.0, 2.0, 5.0 and N, =0, 0.001, 0.01, 0.f, 1.0,
10.... are presented elsewhere (Takara, 1987).

For a square enclosure with L, =1,=1.0, the centerline
temperature and heat flux distribution presented in Tables
2{a-f) are essentially identical to the graphic results presented
by Razzaque et all. (1984). This agreement supports the ac-
curacy of the present calculation. The centerline heat flux
generated by the P-3 approximation (Ratzel and Howell, 1982)
differs significantly from the present results. This demon-

strates the uncertain accuracy of the P-3 approxi-
mation.
3(5) Accuracy of the Diffusion Approximation. Because
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Table 4 Nondimensional heat flux distribution at different walls with
Ly= 1.0and Ly =0.5

Table 5 Nondimensional heat flux distribution at differant walls with
Ly=0Sandiy;=1.0

" Nondimensionat Bottom(hot) wall nondimensional heat flux ] Nondimensional Bottom{hot) wall nondimensional heat fux —I
position n Ny=L0 Ny=01 N;=001 N, =0.001 N1=UI position i Ni=10 N =01 AN, =00l N=0001 N, =9
0.t 14.042 2.128 0934 0.8i2 0.797 i 0.1 21.278 2.898 1.000 0.864 0.836
0.3 6.363 1.309 0.807 0.765 0.757 E 0.3 10,576 1.779 0.898 0.828 0.808
0.5 5.494 1.210 0.786 0.754 0.745 I 0.5 8.772 1.587 0.871 0.818 0.802
Nondimensional Side{cold) wall nondimensional heat flux ! Nendimensional Side(cold) wall nondimensional heat flux
position ¢ Ne=10 Ni=01 Ny=001 N =0001 N, =0 l position ¢ Ny=10 NS0l N,=001 N, =000l N =0
2.1 13.889 1.548 0.653 0.536 0.524 0.1 11.681 1.532 0.520 0.410 0.405
0.3 7.223 1.083 G.484 0.430 0.426 0.3 2,708 0.481 0.263 6.227 0.223
0.5 4,098 0711 0.373 0.348 0.349 0.5 0.824 0.200 0.134 0.128 0.130
0.7 2.214 0.458 0.285 0.279 G.282 Q.7 0.268 0.093 0.073 0.075 0.077
0.8 0.798 0.248 0.202 0.213 0.220 0.9 0.077 0.040 0,038 0.042 0.045
Nondimensional Top{cold} wall nondimensional heat Aux Nondimensional Top(eold) wall nondimensional heat flux
position 7 N =10 N =01 N;=001 N =0001 N;=0 position 1 MNM=1l0 Ny=01 N,=001 N;=0001 N; =0
0.1 1.558 0.481 0.353 0.348 0.349 0.1 0.098 0.082 0.083 0.092 0.097
0.3 3.309 0.743 0.461 0.455 0.453 ¢.3 Q.143 0.098 0.084 0.10t 0.105
0.5 3.819 0.6827 0.521 0.489 0.488 0.5 0.159 0.103 0.088 0.104 0.108
Total rondimensional heat fluxes Total nendimensional h;mt fluxes
N=L0 Ny=01 N =001 N, =0001 N,=0 Ny=LD Ny =01 N =001 N,=0001 N,=0
Bottom wall 3.748 0.723 0.420 0.3g91 0.387 Bottom wall 2.883 0.483 {.230 0.250 0.205
Side wall 2,419 0.396 0.198 0.181 0.181 Side wall 2.948 0.455 0.152 0.180 0.180
Top wall 1.319 0.317 0.218 0.207 0,207 Top wall 0.032 0.c23 0.023 0.024 0.028
% error 0.25 1.28 1.99 1.13 0.10 % error 0.58 0.57 71 2.88 0.03

of the mathematical complexity of radiation, the diffusion ap-
proximation (Deisler, 1964) is still a common approximation
procedure utilized by most practicing engineers in assessing
the importance of radiation in actual multidimensional
engineering systems. It is interesting to note, however, that,
except for one-dimensional planar systems, the relative ac-
curacy of the diffusion approximation has never been
demonstrated quantitatively. The present numerical results are
now used to assess the accuracy of the diffusion approxima-
tion for two-dimensional combined conduction-radiation
problems.

Using an 11x 11 grid, numerical results are generated for
the same set of values for L,, L,, and N, based on the diffu-
sion approximation. A complete set of numerical data is
presented elsewhere (Takara, 1987). Using an expression
similar to equation (10) (with f3;,, replaced by fy), the
minimum and maximurn values of A, A, and Aqr for various
square enclosures are presented in Table 6. Since the diffusion
approximation always predicts a correct ¢ at the boundary,
the minimum A, is calculated only for the interior points
along the two centerlines. It is apparent that while the diffu-
sion approximation is moderately successful in predicting the
interior temperature distributions ¢ (less than 17 percent max-
imum relative error), it is uniformly inaccurate in predicting
heat transfer. The validity of many existing practical engineer-
ing calculations utilizing the diffusion approximation for the
radiative heat transfer effect is thus highly uncertain.

3(c) Accuracy of the Additive Solution. In one-
dimensional combined conductive-radiative heat transfer
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Table 6 Maximum (minimum) value of &, &, , and 4,4, In percent
along the horizontal and vertical centerlines belween the numerical
results and the diffusion approximation and an 11 x 11 grid for a square
enclosure with varlous values of Ly and N4

(L= Ls Ny =10 .1 o.M 0.001
: .
Pool A, 6.20(1.29)  15.02(5.06) 18,20(5.28) 9.67(2.13)
i 4, 6D.0L(58.88) 57.43(55.56) 531.69(518.30) B871.27(836.27)!
i !
| 8, 100.00(8027) 100.0(3.60) 387.37(85.58) $63.32(100.00) ]
B i
L0 A, 5.58(1.18)  12.60(4.03) 7.11(0.27) 10.19(0.01) |
: &, 62.31(52.22) 2.32(1.97)  85.48(8L.58) 111.24{102.78)
A, 100.00{63.04) 100.00(9.01)  100.00(5.68)  100.00{0.25)
10 A, 5.52(1.00} 9.23(2.72) 4.81(0.04) 10.06(0.21)
4, 64.80(84.49)  27.86(27.51) 5.38(0.97) 14.08(6.79)
4, 100.00(85.23) 100.00{0%.66)  100.00(1251)  100.00(i2.47)
20 A 4.62(0.63) 5.54(2.08) 7.34(0.64) 16.14{0.18)
&, 67.93(87.01) 53.37(44.73)  38.90(38.50)  39.54(32.86)
8, 100.00(67.42) 100.00(47.58)  100.00(45.48) mo.oo(u,a"ﬂ
50 4, 3.25(0.94) 7.19{0.84) 6.55(0.26) B.15{0.08) |
1
B, TRILBV.78) 7ATX46.98)  64.70(59.64)  68.12(58.51)]
8, 100.00(66.78) 100.00{34.27)  100.00(63.84)  100.00(62.98) l
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Table 7 Maximum (minimum) value of Ay Ag , and Aq in percent
aiong the horizontal and vertical centerlines between the numerical
results and the additive solution with an 11 x 11 grid for a square
enclosure with various values of Ly and N,

(L, =L, No= LD 0.1 0.01 0.001
oL 4, 0.02{0.01) 0.20(0.10)  0.87{0.42)} 1.24(0.40)
; bg,  0.48(0.00) 0.48(0.00)  0.64(0.01) 0.69(0.09)
i 05 4,  0.33(0.08) 211(0.42)  4.95(0.35)  1.77(1.06)
: 4,  0.73(0.03) 1.75(0.02)  2.79(0.77) 1.08{0.38)
; Ld A, 1.04{0.20) 5.78(1.39}) 10.60{4.38) 1.11(0.85)
i A, 1.38(0.27) 4.30(0.48)  6.22(0.19) 1.19(0.08)
2.0 A 2.73(0.47)  14.66(3.37) 4.41(3.54) 0.88(0.50)

Aq.‘ 10.25(0.58) 18.31{0.95) 5.82{0.05} 1.07(0.00)

50 4, 16.12(0.38) 85.04(7.58) 5.50(2.02) 0.85{0.16)

4, 6046(0.71) 1:9.18(0.23) 7.05(0.06) 0.99(0.00)

analysis, it is well know that the additive solution generated by
separate independent analyses of the two transfer processes is
an accurate approximation (within 10 percent) to the total heat
transfer (Einstein, 1963; Yuen and Wong, 1980). For the
present two-dimensional problem, an additive solution for the
heat transfer can be written as

g, =4N\B.+q, (11

where @, is the appropriate temperature gradient calculated
from a pure conduction analysis and g, is the radiative flux
generated by a pure radiation analysis of the same enclosure.
Utilizing numerical results generated from an 1111 pure
conduction analysis (§5=6{=0.1) and results of a pure radia-
tion analysis presented in a previous work {Yuen and Wong,
1984), the maximum and minimum values of Aq,, and A‘?r for

various square enclosures are tabulated and presented in Table
7. The additive approximation appears to be a reasonable
estimate for both components of the heat flux over the whole
enclosure. Physically, this result suggests that for the estimate
of heat transfer, the interaction between conduction and
radiation can be considered as sufficiently weak that each
process acts almost independently. It is important to note,
however, that the additive solution cannot be used to predict
the temperature profile.

4 Conclusions

Results of a two-dimensional combined conduc-
tive-radiative heat transfer analysis are presented. Based on a
numerical technique developed previously for a two-
dimensional analysis of radiative transfer and an iteration pro-
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cedure utilized for a previous one-dimensional combined con-
ductive-radiative analysis, numerical results are generated ac-
curately and efficiently. Numerical data for temperature and
heat flux distributions are presented.

Based on numerical results, the accuracy of two commonly
used approximation methc .« for radiative transfer is assessed.
The diffusion approximation is shown to be uniformly inac-
curate for two-dimensional combined conduction radiation
problems. For all optical thicknesses and conduction-radia-
tion parameters considered (including the optically thick
limit), the diffusion approximation is shown to yield signifi-
cant errors in both the temperature and heat flux predictions.
The additive solution, on the other hand, appears to be an ef-
fective empirical approach in estimating heat transfer. The
success of the additive solution suggests that in multidimen-
sional combined conduction-radiation problems, the interac-
tion between radiation and conduction can be considered as
sufficiently weak that the two processes contribute in-
dependently to the total heat transfer,
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