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AN EFFICIENT CPU-GPU IMPLEMENTATION OF THE
MULTIPLE ABSORPTION COEFFICIENT ZONAL
METHOD (MACZM)

Boutros Ghannam1, Maroun Nemer1, Khalil El Khoury1, and
Walter Yuen2
1MINES ParisTech, Center for Energy and Processes, Paris, France
2University of California Santa Barbara, Santa Barbara, California, USA

The multiple absorption coefficient zonal method (MACZM) is an efficient radiative heat

transfer modeling method in nonisothermal inhomogeneous media. The method is of high

interest for dynamic applications because of its ability to asses semitransparent radiative

heat transfer in very short computation time. In this work, an efficient algorithm for

MACZM is implemented. A connectivity control study is presented for taking into account

the connectivity considerations required by the method. An identified ray traversal algorithm

corresponding to part of the MACZM implementation is then selected among three different

approaches presented in the article, based on well-known ray traver sal algorithms, the

6-tripod line algorithm and the 6-parametric line algorithm. On the other hand, the

MACZM is highly parallel and is implemented in CUDA, a parallel computing architecture

that enables easy use of a powerful graphics processing unit (GPU). An efficient implemen-

tation is discussed consisting of an optimal solution for exploiting the method parallelism

(threading) and the use of the memory resources available on the GPU. Speed-ups going

from 300 to 600 times are achieved, using a NVIDIA Tesla C 1060 GPU and an Intel Xeon

CPU E5507 at 2.27GHz. Radiative heat transfer is then simulated in a steel reheating fur-

nace using the optimized GPU implementation. The computation time is further reduced by

using a multigrid approach.

INTRODUCTION

Applications where the radiative heat exchange is dominant are very challeng-
ing. Steel reheating furnaces are a good example of an application where the radiative
heat exchange is dominant, because of the high operating temperatures. Moreover, a
steel reheating furnace is filled with nonhomogeneous media due to combustion gases
that circulate in it. Steel slabs have to be reheated to temperatures around 1,200�C.
Many processes can be applied to the steel slabs when they leave the furnace. The
quality of the final product is very sensitive to the temperature profiles of the slabs
leaving the furnace. For example, the temperature of a slab has to be homogeneous
when it enters a rolling process. Thus a good knowledge of the temperature profiles
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inside the furnace is very important. From this comes the importance of a dynamic
numerical simulation of the heat transfer. In additon, the energy consumption can
be decreased when dynamic simulations are provided.

The high need for efficient modeling of radiative heat transfer in participating
media has led to the development of many numerical methods. The multiple absorp-
tion coefficient zonal method (MACZM) is a recent method published by Yuen [1]. It
is based on the concept of generic exchange factors (GEFs) and is a more sophisti-
cated form of the zonal method. In the MACZM, a new definition of GEFs as super-
position of partial generic exchange factors is given in order to make the method
suitable in general three-dimensional and inhomogeneous media. In this way, the
accuracy of the method was validated by Yuen on the mixing of hot molten fuel with
water. In a separate work, Yuen [2] introduced the definition of a set of physical
entities, the mean beam lengths (MBLs), as a basis for simple GEF correlations.
The advantage of MBLs is the ability of their functional behavior to be accurately
correlated by artificial neural networks (ANN) correlations. In a previous work [3],
the fundamental MACZM and the definition ofMBLs were combined and implemen-
ted together based on the ANNs generated by Yuen in [1]. The validity of the entire
approach was then verified experimentally on a dynamic modeling of a steel reheating
furnace. In addition to the good accuracy of the method, it was found to be very fast
in comparison to existing methods, even with a nonoptimized Cþþ code. Because of
the importance of the computation time, especially in dynamic modeling of radiative
heat transfer, the purpose of this work is to present an efficient, fast algorithm
for computing the MACZM. This is done in two steps by the combination of an
optimized algorithm and the best material architecture.

First, the best algorithm for implementing the method in serial code is sought.
As will be described in the body of the article, the MACZM computational time is
spent mainly on two parts. First is the application of ANNs for computing MBLs
and then GEFs, and a ray traversal or line discretization phase in which an important
factor is computed, the mean absorption coefficient. As the application of ANNs is
straightforward, attention will focus on the line discretization operation. The latter

NOMENCLATURE

a absorption coefficient of volume

am mean absorption coefficient

D characteristic dimension of the surface

and volume used in the definition of

generic exchange factors

dS surface element

e algebraic length

F12 view factor between surfaces A1

and A2

g1g2 generic exchange factor between

volumes V1 and V2

GEF generic exchange factor

L length of line segment

La absorption mean beam length

Lem emission mean beam length

Lt transmission mean beam length

MBL mean beam length

nx dimensionless x coordinate

ny dimensionless y coordinate

nz dimensionless z coordinate

x, y, z orthogonal coordinates

Subscripts

i, j, k element index

pp parallel component

pd perpendicular component

x, y, z direction index

xy situated in the xy plane

xz situated in the xz plane

zy situated in the zy plane
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is more complicated and is widely studied in the literature. Three-dimensional discrete
lines are of special importance in graphics, because they are fundamental in building
complex discrete objects [4, 5]. A 3-D discrete line also represents the path of a ray in
3-D discretized space, and tracing discrete rays is of high interest in graphics and in
image processing because it is significantly more efficient in terms of calculation time
than ray-tracing methods that are based on a geometric representation of 3-D scenes
[6]. Therefore, many fast algorithms have been developed for generating 3-D discrete
lines in voxel space [6–8]. In the present work, these algorithms are adapted to the
MACZM and compared in order to find the fastest ray traversal algorithm that best
fits the calculation of the mean absorption coefficient.

The MACZM is implemented in CUDA on a NVIDIA Tesla C 1060 GPU.
Because of its high parallelism, the MACZM can give high speed-up with parallel
implementation. The only difficulty is to choose which multiprocessor architecture
best fits the application. Multicore architectures were born when the rise in CPU
clock frequency had become limited, for example the Intel multicore CPUs, the Sony=
Toshiba=IBM alliance’s Cell Broadband engine [9], etc. Another powerful solution
for parallel programming is GPU. Originally, GPUs were developed for fast graphics
rendering. They were then used in general-purpose programming [10]. Nevertheless,
before the appearance of CUDA, a good knowledge of graphics API was necessary
for programming general-purpose GPUs, and thus only a few specialized program-
mers were able to develop efficient parallel codes on GPUs. CUDA was released in
early 2007 by NVIDIA [11, 19]. CUDA is an extension of C=Cþþ associated with
a hardware support added to the GPU. It allows the programmer efficient program-
ming without passing by any graphics API. Starting in 2007, many scientific applica-
tions (especially in biological photography) have been developed in CUDA. High
performance and speed-up have-been achieved, thus permitting much more advanced
development in scientific research. In the present work, CUDA is used because of its
single-instruction, multiple-data (SIMD) programming model, which can achieve
high speed-up of the program compared to the CPU program, as demonstrated in this
article.

The article is organized as follows. First the multiple absorption coefficient
zonal method (MACZM) is explained briefly and the main parts of its algorithm
are highlighted. Then the methods and algorithms for a one-thread implementation
are discussed and the optimal ones are chosen (discretization, discrete lines, and
ANNs). A brief introduction to CUDA is necessary for the discussion of a CUDA
implementation for MACZM. An efficient MACZM implementation is then
presented. Finally, the approach is applied to a steel reheating furnace in which a
multigrid method is used to avoid time waste during computation.

MULTIPLE ABSORPTION COEFFICIENT ZONAL METHOD (MACZM)
AND ALGORITHM

The multiple absorption coefficient zonal method MACZM [1–3] is based on
the concept of generic exchange factors (GEFs). A generic exchange factor is the frac-
tion of energy emitted from a radiating space element and absorbed by another space
element. In the work of Yuen, space elements are cubical voxels. Artificial neural net-
works (ANNs) are generated accordingly to allow the computation of GEFs between
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any couple of voxels in a voxelized discrete space. The GEF depends on the distance
between the two voxels, their absorptivities, and the transmissivity of the medium
between them. The ANNs do not generate GEFs directly. Yuen defined six entities,
the mean beam lengths (MBLs), that are generated directly by ANNs and are used
in simple equations to give GEFs. MBLs are functions of the same variables as GEFs.
Equations giving GEFs from MBLs are similar to the following:

g1g2
D2

¼ Fgg ¼ F12 nx; ny; nz
� �

ð1� e�a2LaÞð1� e�a1LemÞe�amLt ð1Þ

where g1g2 is the volume–volume GEF; Lt, Lem, and La are, respectively, the trans-
mission, emission, and absorption mean beam lengths; nx, ny, and nz are the dimen-
sionless distances between the two voxels; F12 is a form factor; and am is the mean
absorption coefficient of the medium separating the two voxels.

The term volume–volume refers to the fact that the GEF gives the energy radi-
ation exchanged between two voxels (cubical volumes). Similar definitions exist for
GEFs giving the radiation heat exchange between a volume and a surface or between
two surfaces.

Moreover, Yuen defined partial GEFs in order to improve the method accuracy
in homogeneous and noncontinuous media. He demonstrated the accuracy of the
method in [1] by calculating the radiative heat exchange between a high-temperature
(�3,000K) molten nuclear fuel and water. Partial GEFs are fractions of the GEF
between two voxels, and they correspond to the fraction of the radiation emitted
by the first voxel through one face only and received by the second voxel through only
one face. Since a voxel is always exposed by three faces to any other voxel in the dis-
crete space, nine partial GEFs exist. All GEFs can be deduced from the definition of
two cases. The first case is when the two emitting and receiving ‘‘virtual’’ surfaces
(voxel’ faces) are parallel, and the second case is when they are orthogonal in space.
Figure 1 shows the parallel and perpendicular components of partial GEFs. Parallel
and perpendicular MBLs are defined correspondingly, and their expression to partial
GEFs is then

g1g2ð Þpp
D2

¼ F12;pp nx; ny; nz
� �

ð1� e�a2La;ppÞð1� e�a1Lem;ppÞe�amLt;pp ð2Þ

g1g2ð Þpd
D2

¼ F12;pd nx; ny; nz
� �

ð1� e�a2La;pd Þð1� e�a1Lem;pd Þe�amLt;pd ð3Þ

where the subscripts pp and pd refer to parallel and perpendicular components,
respectively. It is now clear that in this equation the form factors are form factors
between two surfaces.

Looking back to Eq. (1), it is clear that all variables are known except the mean
absorption coefficient am. In fact, the computation of am is an important part of the
algorithm and will be detailed further in the article.

Consider now an enclosure with radiating objects and let MACZM be applied
to compute the radiation heat exchange factors between elements of the scene. Three
major steps are to be considered in the algorithm. The first step is the discretization of
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the scene, by dividing the space into cubical voxels. The heat-exchange factor between
any couple of objects is to be computed in the next two steps. The second step com-
putes the mean absorption coefficients needed for the application of ANNs and the
calculation of GEFs. The third step is the calculation of MBLs and then GEFs using
ANNs and the equations described above. Finally, the summation of all GEFs
between two objects or, in other words, GEFs between all their voxels, gives the direct
radiativeheat-exchange factors. Many methods could be applied for the deduction of
the total exchange factors, for example, the optimized plating algorithm of El Hitti
et al. [12], but this is not within the scope of this article. In the following three sections,
optimized methods for the three steps of the algorithm are discussed.

GRID GENERATION AND REPRESENTATION OF THE OBJECTS
IN THE DISCRETE SPACE

As mentioned before, the first step of the algorithm is the application of uniform
volume meshing (cubical voxels, dx¼ dy¼ dz¼D) to the scene volume and objects.
Let Z3 be the subset of R3 corresponding to all the elements of R3 whose coordinates
are integers, and let us consider an orthogonal system of coordinates (O, x, y, z) inZ

3.
In a dimensionless representation, the dimension of a voxel is D¼ 1 and each voxel in
(O, x, y, z) is identified by the coordinates of its lower left corner (i, j, k)2Z3. The
dimensionless distances between two voxels along the principal coordinates are
(nxD, nyD, nzD), where (nx, ny, nz)2Z3. The algorithm then stores the discrete scene
absorption coefficients in a 3-D array, where each value in the array is the absorption
coefficient value in the voxel assigned to this array position. The 3-D array is a direct
projection of the meshed 3-D space.

Figure 1. Partial GEFs’ basic parallel and perpendicular components (pp and pd).
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Given the dimensions and the position of an object in the 3-D scene, the set of
voxels corresponding to the object in the discrete space is found by the 3-D scan-
conversion algorithms’’ of Kaufman and Shimony [4]. These algorithms allow
voxelization of 3-D quadratic objects such as cylinders, cones, and spheres as volumes
or surfaces optionally. These basic geometric shapes are then used to construct the
whole objects in the scene. The 3-D scan-conversion algorithms are very efficient; they
generate voxels incrementally, using only additions, subtractions, and comparison
tests, thus guaranteeing linear complexity in terms of the voxels’ number.

MEAN ABSORPTION COEFFICIENT COMPUTATION BY RAY TRACING

This step of the algorithm computes a mean absorption coefficient over a ray or
the line between the center points of two surfaces of two distant voxels. First, the ray
(or the continuous line) is discretized (voxelization). Then, the mean absorption coef-
ficient takes the value of the mean absorption coefficient over all voxels crossed by
the ray. The value of the mean absorption coefficient is computed by the following
equation:

am ¼
X
i

aiLi

 !�
L ð4Þ

where am is the mean absorption coefficient to be computed. The index i refers to vox-
els crossed by the ray or, in the algorithm, voxels that are in the discrete line corre-
sponding to this ray. ai is the absorption coefficient assigned to the voxel i. Li is the
length of the segment of the line (the ray) in the voxel i. L is the total length of the
continuous line.

Connectivity of the Discrete Line

Consider now the discrete space represented by Z3, where a voxel is defined by
the coordinates of its lower left corner. A line discretization function representing a
line from R3 in Z3 is a function that associates the value 1 to each voxel of Z3 corre-
sponding to the continuous line and the value 0 to other voxels. However, the defi-
nition of this function is not unique and the choice of voxels representing the line is
flexible, depending on the connectivity between them. A discrete line is said to have
the containment property if it contains all voxels pierced by the continuous line [13].
A voxel of the 3-D discrete space shares 6 faces with the adjacent voxels, 12 edges,
and 8 corners. The connectivity between two voxels is defined accordingly: Two
voxels are 6-connected if they have a face in common, 18-connected if they share a
face or an edge, and 26-connected if they share a corner or an edge or a face. In
the 2-D space, there are similarly 4- and 8-connected pixels. From here, an N-path
in Z3 is a sequence of voxels where all consecutive pairs of voxels are N-connected
(N¼ 6, 18, or 26). Consequently, anN-line is anN-path inZ3 corresponding to a con-
tinuous line in R3. Two 2-D discrete lines corresponding to the 4- and 8-connected
lines are represented in Figure 2a. As we can see in Figure 2a, an 8-connected line does
not have the containment property. Similarly, in 3-D space only the 6-line has the
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containment property. Nevertheless, 18-connected and 26-connected lines are used in
graphics for ray tracing. The reason is that the latter contain fewer voxels by a mean
factor of 2, which implies a faster algorithm for computing lines [6–8, 12–14]. Some
algorithms can even switch between connectivities in order to achieve maximum
precision with minimum computation time.

Hence, a 6-connected discrete line algorithm clearly gives more precision at the
cost of some added computation time. In the present case, the 6-line is used for com-
puting the mean absorption coefficient from discrete lines, because of some particula-
rities of the MACZM. First, the MACZM is accurate when relatively large mesh size
is considered, as demonstrated in Yuen’s work [1]. This implies that a low-resolution
meshing is taken whenever possible, i.e., every time that the geometry inside the scene
is not complicated. This means that a large portion of the continuous line can be omit-
ted when using 18- or 26-connected discrete lines while estimating the mean absor-
bance coefficient, which gives a nonprecise value, given that the medium is not
homogeneous. This privileges the use of the 6-line to give an acceptable precision
for the estimation. In addition, the mean absorption coefficient is used later in the
algorithm as an input to a system of artificial neural networks. Taking into account
the error produced by the ANN, only a small error can be accepted on its inputs.
Finally, considering the application of the MACZM in a noncontinuous medium, a
single mean absorption coefficient between two voxels is replaced by 9 mean absorp-
tion coefficients in order to take into account accurately the presence of discontinu-
ities in the intervening medium. An example is illustrated in Figure 2b, as it is

Figure 2. Connectivity control. (a) An 8-connected line (left) and a 4-connected line (right). (b) Difference

in mean absorption coefficient over two different paths.

AN EFFICIENT MACZM IMPLEMENTATION 445

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
8:

24
 0

7 
Ja

nu
ar

y 
20

16
 



presented in Yuen’s work [1]. From this example it can be deduced that omitting a
voxel, or replacing a voxel by another one while computing the pass for a mean
absorption coefficient, may result in an error that can be very significant, especially
when a bigger mesh size is considered.

Three well-known 6-line algorithms are now reviewed and completed with the
calculation of the length traversed by the continuous line inside each voxel of the cor-
responding discrete line. The issue is to select the fastest discrete line computation
algorithm when combined with the ray-length calculation inside voxels.

Span-by-Span Algorithm

Using mathematical formulations, discrete lines are demonstrated to have
global properties [15, 16]. Those properties are used to reduce the space interval over
which the line is computed. For example, all discrete lines are demonstrated to have
a point of symmetry, which simply reduces the computation to half. More generally,
the whole discrete line is reduced to a word, the word being a small number of voxels
representing a segment of the continuous line, and the line is demonstrated to be
equal to the recurrence of this word excluding the beginning and the end of the line.
The word is computed directly using Bresenham’s algorithm [17]. Improvement to
the word’s computation time can be obtained using N-step algorithms [18].

The best span-by-span method reaches 20 times better computation time [15]
over the basic Bresenham algorithm. Unfortunately, the overall gain of those algo-
rithms is significant only for lines having a length of more than 100 voxels. However,
it has been shown, on one hand, that the use of very long lines in MACZM, which is
equivalent to a very fine meshing, would result in a long computation time for ANNs.
On the other hand, and as could be observed in the computation of the length of the
ray inside the voxels, there are no properties for length values that can be compared to
the line properties. This implies that the method cannot be held for computing lengths
at the same time, which means no gain in length-computation time that has to be com-
puted separately. In fact, even with some precalculated values, the calculation of the
length will at least take three multiplications per voxel, which is by itself more
time-consuming than a whole step of the tripod algorithm and parametric algorithm,
as will be seen in the next two subsections.

The Tripod 6-Line Algorithm

The tripod algorithm was presented by Kaufman and Cohen-Or [14] as an
efficient 6-line algorithm that guarantees the containment property; its efficiency is
very similar to that of the parametric algorithm. We will briefly describe the algor-
ithm. First, consider a Cartesian coordinate system (O, x, y, z) and a positive ray
AB connecting two points A and B in (O, x, y, z). A line is said positive when it
has positive slopes in the three principal directions Ox

�!
, Oy
�!

, and Oz
�!

. Based on the
fact that in a discrete 6-line all voxels are face-adjacent, the tripod moves from voxel
to voxel by tracking which face the ray pierces when leaving the voxel. In the case of a
positive line, only three faces of the voxel can be pierced by the leaving ray, and the
right face is determined by tracking the projections of the line on the three main axes’
planes. This can be done using the midpoint technique as presented in [14]. Globally,
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the projections of the 3-D line on the three principalplanes (O, x, y), (O, x, z), and
(O, y, z) are defined by the implicit equations:

exy ¼ Ay� Bx�D1 ¼ 0 ð5Þ

exz ¼ Az� Cx�D2 ¼ 0 ð6Þ

ezy ¼ Bz� Cy�D3 ¼ 0 ð7Þ

The direction to which the leaving face is orthogonal is determined by eliminating
the two other directions using the following tests:

1. If (exy< 0), then the face is not orthogonal to the y direction.
2. If (exz< 0), then the face is not orthogonal to the z direction.
3. If (ezy< 0), then the face is not orthogonal to the y direction.

This results in the following pseudo-code:

Set n¼ delta_iþ delta_jþ delta_k (n¼ number of voxels in the discrete line)
WHILE n> 0
IF e_xy< 0
IF e_xz< 0
e_xyþ¼ b2
e_xzþ¼ c2
indxþ¼ step_x
La¼Lc
Lc¼ slope_x�step_x (length end of voxel)
amþ¼ (Lc-La) � aijk (absorption coefficient)

ELSE
e_xz�¼ a2
e_zyþ¼ b2
indzþ¼ step_z
La¼Lc
Lc¼ slope_z � step_z
amþ¼ (Lc-La) � aijk

END IF
ELSE
IF e_zy< 0
e_xz�¼ a2
e_zyþ¼ b2
indzþ¼ step_z
La¼Lc
Lc¼ slope_z � step_z
amþ¼ (Lc-La) � aijk

ELSE
e_xy�¼ a2
e_zy�¼ c2
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indyþ¼ step_y
La¼Lc
Lc¼ slope_y � step_y
amþ¼ (Lc-La) � aijk

END IF
END IF
DECREMENT n

ENDWHILE

Here, instructions are added to the fundamental algorithm for calculating the length
of the ray inside each voxel as well as the fraction it adds to the mean absorption
coefficient. Given the length La of the ray before entering the voxel and the
calculated length Lc of the ray when leaving the voxel, the length of the ray inside
the voxel is then evaluated as Lc�La, where Lc is calculated at each step by multi-
plying the slope of the direction to which the leaving face is perpendicular by the
coordinate of the face in this direction, and La is the Lc of the previous step. Finally,
the contribution of the voxel to the mean absorption coefficient is obtained by
multiplying the length of the ray inside the voxel by the mean absorption coefficient
aijk of the voxel:

Lc � Lað Þ � aijk ð8Þ

The tripod 6-line algorithm includes only integer operations. The voxel tra-
versal takes only two sign tests and three additions by incremental step. The calcu-
lation of the length of the ray inside the voxel takes one multiplication and one more
addition (Lc�La), by step, and the mean beam length takes equally one more mul-
tiplication and one more addition. As will be seen in the 6-parametric algorithm, the
multiplication is avoided in the calculation of the length inside voxels, and thus some
gain in computation time can be achieved. In summary, the tripod algorithm has two
multiplications, five additions, and one auto-decrement branch by incremental step.

The Parametric 6-Line Algorithm

The parametric 6-line, well known as the 3D-DDA algorithm in graphics, was
designed by Amananatides and Woo [8]. This algorithm is very efficient, guarantees
the containment property, and is widely used in computer graphics. In Figure 3, the
method is illustrated in the 2-D planeðOx

�!
; Oy
�!Þ. In an initialization phase, the voxel

where the ray origin is situated is considered. In this phase the ray length inside the
origin voxel is calculated in the three main directions x, y, and z, and stored in three
variables tmaxx, and tmaxz, respectively. The path lengths of the rays corresponding
to the voxel width in each of the three main directions tmaxy are also calculated and
stored in deltax, deltay, and deltaz, respectively. The second phase of the algorithm is
an incremental phase. In this phase, starting from the origin, variables tmaxx, tmaxy,
and tmaxz are compared. The smallest of them shows the direction perpendicular to
the face from which the ray leaves the voxel. For example, if tmaxx is the smallest, it
will be increased with the value of the corresponding variable deltax, which gives in
tmaxx the value corresponding to the length that the ray will have when it hits for
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the next time a face perpendicular to the x direction. The same step is repeated until
all voxels of the discrete line are traversed. The pseudo-code is written hereafter:

Setn¼ delta_iþdelta_jþdelta_k (n¼ number of voxels in the discrete line)
WHILE n> 0
IF tmax_x <tmax_y
IF tmax_x <tmax_z
amþ¼ (tmax_x-Lca) � aijk (absorption coefficient)
Lca¼ tmax_x
tmax_xþ¼ delta_x
indxþ¼ step_x

ELSE
amþ¼ (tmax_z-Lca) � aijk
Lca¼ tmax_z
tmax_zþ¼ delta_z
indzþ¼ step_z

END IF
ELSE
IF tmax_y<tmax_z
amþ¼ (tmax_y-Lca) � aijk
Lca¼ tmax_y
tmax_yþ¼ delta_y
indyþ¼ step_y

ELSE
amþ¼ (tmax_z-Lca) � aijk
Lca¼ tmax_z
tmax_zþ¼ delta_z
indzþ¼ step_z

END IF
END IF
DECREMENT n

ENDWHILE

Figure 3. A parametric 6-line in two dimensions.
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It can be seen that the voxel traversal in the basic 3D-DDA algorithm takes
only two sign tests and two additions by step, which means an addition less than
the tripod algorithm. Furthermore the calculation of the ray length at each step is
given directly by the tmax variable corresponding to this step. The calculation of
the length traversed by the ray inside the voxel, as well as the mean absorption coef-
ficient, is similar to the previous algorithm. Finally, the parametric 6-line algorithm
has only one multiplication, four additions, and one auto-decrement branch. Hence
it has one multiplication and one addition less than the tripod algorithm by
incremental step.

Comparison of the Ray Traversal and Mean Absorption Coefficient
Computation Algorithms

Three cases are considered in comparisons: the algorithm based on the tripod
6-line ray traversal, which is executed with integer variables only; the algorithm
based on the parametric 6-line ray traversal, which is executed in the first case with
single floating-point variables and in the second case in integer mode. As demon-
strated earlier, both the 6-tripod and 6-parametric line algorithms guarantee the
property of containment of the line, thus they generate a 6-connected line. The pre-
cisions of the two algorithms are then similar, and both of them guarantee an accu-
rate generation of the line. Hence, the choice of the mean absorption coefficient
computation algorithm will be done based on its efficiency in computation time.
Table 1 presents a comparison of the computation for three cases. In each case,
the algorithm is run for the computation of 1 million rays having a mean length
of 100 voxels. All computation times are recorded on a Xeon 2.33GHz CPU. As
expected, when executed in integer arithmetic, the parametric 6-line algorithm, which
has the smallest number of operations, is the fastest. It is then chosen for the
practical implementation.

Table 1. Computation time for 1 million rays having an average length of 100 voxels

(Xeon 2.66GHz CPU)

Algorithm Time (s) Properties

Tripod 6-line (Kaufman et al.) 2.26 6-connected line

Integer arithmetic

Nonsymmetric

Parametric 6-line (Amanatides and Woo)

(floating-point arithmetic)

5.16 3DDDA (3-D discrete

differential analyzer)

6-conneted line

Floating-point calculations

Symmetric

Parametric 6-line (Amanatides and Woo)

(integer arithmetic)

1.89 3DDDA (3-D discrete

differential analyzer)

6-connected line

Integer arithmetic

Symmetric
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ARTIFICIAL NEURAL NETWORK AND GEF SUPERPOSITION

ANNs are two-layer neural networks. An example of an ANN is:

ðXÞ ¼ ½W1ð20� 5Þ� � ðPÞ þ ðB1Þ ð9aÞ

Z ¼ FðXÞ � ðW2Þ þ b2 ð9bÞ

The inlet vector is P¼ (nx, ny, nz, am, a1, a2). (nx, ny, nz) are the dimensionless dis-
tances, am the mean absorption coefficient, and a1 and a2 the absorption coefficients
of voxels. The application of ANNs is straightforward. In the first layer, P is multi-
plied by a 2-D matrix W1 and added to a vector B1. A log-sigmoid function is then
applied to the resulting vector. The second layer consists of multiplying the resulting
vector by a vector W2 and adding a constant b2 to the result. Finally, we obtain an
MBL, which is put in its equation to compute the GEF. The size of ANNs on the
disk is about 4KB, which means absolutely that matrices will be loaded to DRAM
memory in order to have fast access to them. ANNs have to be applied nine times for
each GEF computation, correspondingly to the nine partial GEFs. Between the nine
partial GEFs, there are three cases where surfaces are in parallel planes and six cases
where they are in orthogonal planes (Figure 1). Thus ANNs have only to be defined
for two cases, one parallel case and one perpendicular case, resulting in three couples
of parallel and perpendicular neural networks (Figure 1).

Hence, in order to compute the nine cases, the nine corresponding mean
absorption coefficients along the lines between the center points of the nine surface
couples are first computed. Then, the parallel and perpendicular cases are separated
and geometric transformations to the dimensionless distances of each case are
applied in order to obtain the same parallel or perpendicular configuration as in
the definition of ANNs.

Finally, the superposition of partial GEFs gives GEFs that are in their turn
summed over all the couples of voxels of two objects, which gives the direct radiative
exchange factor between the two objects.

GPU CUDA PROGRAMMING MODEL OVERVIEW

Figure 4 shows the architecture of a CUDA-capable GPU, the NVIDIA Tesla C
1060 (used in this work). A GPU is presented as a set of highly threaded streaming
multiprocessors (SMs). Each SM has a number of streaming processors (SPs) with
a cached shared memory. AGPU has its own DRAMmemory, a graphics double rate
(GDDR), referred to as global memory. Thus, GPUDRAMhas longer latency access
than CPU DRAM. The longer latency of GPU DRAM is compensated by higher
memory bandwidth and by running thousands of threads concurrently. Performance
increases when increasing the number of parallel threads. All parallel threads execute
on SPs. The Tesla C 1060 has 30 SM (8 SPs for each), and it supports up to 512 threads
per SM, which sums to 15,360 threads. Each CUDA-capable GPU is equipped with a
hardware control unit for managing thread execution. Threads execute in groups
called tiles and warps (16 and 32 threads). Threads in a SM can exchange data via
the shared memory, a limited memory resource with low-latency access. Threads in

AN EFFICIENT MACZM IMPLEMENTATION 451

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
8:

24
 0

7 
Ja

nu
ar

y 
20

16
 



a warp execute the same instruction at a time (using different data input). This tech-
nique of parallel execution is called single-instruction, multiple-thread (SIMT), which
is a case of single-program, multiple-data (SPMD) programming.

PARALLEL IMPLEMENTATION OF MACZM IN CUDA

Since theMACZM is here for the first time implemented on a parallel processor,
the choice of CUDA is first justified. As stated before, the GEF computation in the
MACZM is carried out in two principal steps. The first is the computation of the cor-
responding mean absorption coefficient. The second step is the application of an
ANN. The mean absorption coefficient for a GEF is computed using a discrete line
algorithm applied to the line between the couple of voxels corresponding to the cur-
rent GEF. This algorithm applies to any couple of voxels independently of the others.
Thus, it is able to run in parallel. This is the same for ANNs that are applicable
independently to the computation of any GEFs. Moreover, while computing GEFs
between any voxels, the same ANNs apply for computing the partial GEFs, and since
they are independent, they are executable in the same time and in the same chrono-
logical order. This gives one identical kernel to execute on different voxel couples.
This is, consequently, a single-instruction, multiple-thread (SIMT) parallel program-
ming model [19, 22]. Now that this is demonstrated, the CUDA implementation is
done as follows.

CUDA Parallel Kernel

The computation of GEFs (mean absorption coefficient, ANNs) takes 99.8% of
the execution time (34.98%, 65% respectively) of the optimized CPU implementation.

Figure 4. Architecture of a CUDA-capable GPU.
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The rest of the computation time is for initializing the absorption coefficients in the
scene array and for initializing the objects using the scan-conversion algorithms.
Scan-conversion algorithms are incremental, and thus their execution is sequential.
Their execution time is also very small. Thus, the scan-conversion is executed on
CPU and then a GPU kernel is launched for computing GEFs. It should be
remembered that the direct exchange factor between two objects is the sum of all
GEFs between them. In other terms, GEFs have to be computed between each voxel
of the first object and all voxels of the second one. The summation of all computed
GEFs gives the exchange factor between the two objects. One CUDA kernel com-
putes the exchange factor between two objects. The CUDA kernel launches one
thread for the computation of each GEF. At the end of its execution, the kernel will
have computed the exchange factor between the two objects. While the kernel is com-
puting an exchange factor between two objects, the CPU sets data for the next kernel
launch and waits for the current kernel to finish before launching the next one on the
GPU. If, for example, there are two objects of 256 and 384 voxels, respectively, it
gives 256� 384 or around 100,000 threads to run in parallel for one kernel, which
is large enough to take advantage of the GPU performance.

Computation of the Mean Absorption Coefficient

The first part of the kernel executes the computation of the mean absorption
coefficient. The same algorithm of the CPU implementation, the parametric 6-line
algorithm, does this. Unlike other discrete line algorithms, this algorithm has the
property of being symmetric. In other words, the same instructions are applied for
computing the discrete line independently of its position in the space (in which main
direction the line slope is higher). This property avoids thread divergence due to the
line positions, since all the threads are executing the same instructions. Generally,
thread divergence occurs when not all threads of a warp execute the same instruction,
due, for example, to an if–else instruction. Then, because of the SIMT execution tech-
nique, some threads have to wait for the others to finish so they continue their
execution, which reduces the number of concurrent threads in a warp. Thus, avoiding
thread divergence when possible is crucial. Divergence can also result when a loop of
the kernel has a condition that does not achieve the loop at the same time in all
threads of a warp. In the present case, this happens if the discrete lines in a warp have
different lengths and consequently different numbers of voxels. Making the threads of
the same warp compute mean absorption coefficients of neighbor voxel couples may
solve this problem, and also reduce the memory access time.

Actually, the parametric 6-line algorithm determines the voxels of the discrete
line incrementally and for each voxel it reads its absorption coefficient from the scene
3-D array. The execution time of the algorithm is limited by the memory access time,
since the number of arithmetic operations in the algorithm is very small. Fortu-
nately, global memory latency can be reduced with coalesced memory accesses. This
is when a block of neighbor variables are accessed once all together (16 Bytes of
memory), and it takes the same time as for accessing one variable in the block. When
neighbor threads (threads of the same warp) compute neighbor discrete lines, they
read neighbor voxels’ absorption coefficients in the scene 3-D array simultaneously,
and thus promote coalesced reads from the 3-D array in global memory. Coalesced
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reads, as well as equal-length lines, are promoted but cannot be guaranteed. Finally,
the 3-D scene array contains only char variables because the execution of this algor-
ithm is two times faster with char array than with float array. For this work, char is
sufficient, and absorption coefficients in the interval ½10�2; 1� are multiplied by 102 to
obtain char numbers in the interval [1, 102].

At the end, the CUDA parametric 6-line algorithm runs 150 times faster on
the GPU compared to the one-thread CPU implementation. The hardware used
here are a NVIDIA Tesla C 1060 GPU and an Intel Xeon CPU E5507 at
2.27GHz.

Artificial Neural Networks

As described in the ANNs section, the inlet vector to ANNs is P¼ (nx, ny, nz,
am, a1, a2) [Eq. (9)]. At this point, the thread computes (nx, ny, nz) from the kernel
input vector, the mean absorption coefficient am is already computed in the previous
step (discrete line), and the absorption coefficients of voxels read from the 3-D scene
array. The only particularity of this phase is that all threads load the entire ANN
matrixes. They could load ANNs by tiles from global memory to the shared mem-
ory. Nevertheless, it is a lot more efficient to transfer (from the CPU) ANNs to
the constant memory and let the threads read them directly in the constant memory.
Actually, this is possible because all ANNs occupy only 3.96KB memory space,
which is very much smaller than the GPU constant-memory space (64KB). Constant
memory is a read-only low-latency memory. When many threads access the same
variable in constant memory, the read operation is very fast. Constant memory is
usually used to store data to be read by threads while executing the kernel. ANNs,
transferred as they are to the constant memory, lead the code to run not as fast as
expected. This is because of the constant memory design. Actually, the constant
memory is a cached global memory. Due to design cost, each cache is designed to
store multiple consecutive words, which gives higher space, but with few cache
entries. While different warps (threads in other blocks) could be using a different
ANN (there are nine ANNs), this may require many entries altogether. In order
to solve the problem, each ANN is regrouped in one data structure. Thus, each
thread now accesses only one cache entry and cache entry traffic is avoided. Once
the computation of GEFs is finished, all threads work together for completing the
GEF summation in parallel.

Finally, as the present ANN CUDA implementation is tested, the code runs
from 400 and up to 1,000 times faster than the CPU code, depending on the grid size.

As for the average time repartition of the MACZM CUDA implementation,
the mean absorption coefficient computation is now the most time-consuming, with
71% of the total time and 29% for the ANN computation. The scan-conversion
execution time is now hidden by the GPU time, since it is executed on the CPU
during kernel run.

At the end, with MACZM CUDA implementation, the gains in computation
time compared to the CPU implementation are 300 times for surface–surface
exchange factors, 450 times for volume–surface exchange factors, and 600 times
for volume–volume exchange factors.
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APPLICATION: SIMULATION OF A STEEL REHEATING FURNACE

Description of the Steel Reheating Furnace and the
Simplified Furnace

The furnace considered is asteel-slab reheating furnace. The steel slabs are
introduced at the furnace entry at ambient temperature. They are positioned on four
supporting rails and circulate slowly toward the furnace exit. During this operation,
the steel slabs are heated to a uniform temperature of about 1,200�C. Then they can
undergo different procedures at the exit (e.g., rolling). The quality of the final pro-
duct is very sensitive to the output temperature of the steel slabs at the furnace exit
and the temperature uniformity inside the steel slabs. This needs a real-time dynamic
numerical simulation process. One more reason the dynamic numerical simulation is
useful, is the reduction of combustible gas consumption.

The internal furnace dimensionsare 36,275 cm� 680 cm� 380 cm. The furnace
can hold 44 slabs of steel laid on four rails. The slabs of steel have different widths
but they all have a height of 20 cm and a length of 80 cm. An average distance of
20 cm is assumed to be separating the steel slabs over the length of the furnace.
Figure 5 shows the repartition of the steel slabs in the furnace. The rails are insulated;
they are assumed to have rectangular shape of dimensions 36,275 cm� 20 cm� 40 cm.
Finally, burners are positioned in the upper and lower zones of the furnace. All
burners are identical, and the combustion volumes are assumed rectangular with
dimensions 80 cm� 400 cm� 80 cm.

Many mesh sizes are going to be considered in the simulations. Since the whole
furnace simulation will be too time-consuming when very fine meshes are used, a
simplified case is well be considered. The simplified case is an identical part of the
furnace beginning from the inlet and going to a depth of 7,200 cm (Figure 5).

Simulation in MODRAY

We use MODRAY in this study in order to benchmark the results. Modray is a
tool developed by the Center for Energy and Processes. It is based on the flux-plane
approximation method for computing radiativeheat-exchange factors. The method
was explained and validated in a previous work [3]. It is just recalled here that
MODRAY decomposesthe surfacesof the scene and the objects it contains into a
number of surface meshes, in order to compute the heat-exchange factors. For our
simulations we considered a surfacedecomposition of 10� 2� 2 for the scene (internal

Figure 5. A charging plane of steel slabs in the steel reheating furnace.
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walls), 2� 4� 2 for the combustion volumes, 4� 2� 2 for the steel slabs, and
10� 2� 4 for the rails.

The furnace is assumed to be filled with gases with an absorption coefficient of
0.1m�1 for all simulations. Walls and rails are insulated, and they have an emissivity
of 0.85. The emissivity of combustion volumes is assumed to be 0.7, and the emiss-
ivity of the steel slabs is assumed to be 0.9. As a result, the simulation of the whole
furnace takes 800 s, and the simulation of the simplified case takes 55 s.

Simulation in MACZM

The simulation of the whole furnace and the simplified case (part of the fur-
nace) are now carried out using MACZM with the same configuration and the same
properties. In MACZM, uniform rectangular meshing is applied. First, a mesh of
voxel volume size 10 cm3 is considered (Figure 6a), which gives over 9 million voxels.
The simulation is too much time-consuming; only the simplified case can be totally
simulated. Results are compared to MODRAY results by calculating the relative
difference.

Simulations are repeated with voxel sizes of 20 cm3, 40 cm3, and 80 cm3, leading
to 1.17 million, 0.15 million, and 18,000 voxels respectively (Figures 6b–6d). Their
relative errors and computation times for all voxel sizes are summarized in Table 2.

Relative Error

We note here that the relative erroris calculated for each category of heat-
exchange factors as a weighted average of all heat-exchange factors in this category,
by the following equation:

Relative error ¼
X
i

ei � við Þ
�X

i

vi ð10Þ

where ei and vi are, respectively, the relative error and the value of the heat-exchange
factor i.

Discussion and MACZM Multigrid

Consider now the results of MACZM with the finest mesh size, 10 cm3. Table 2
shows that all results are accurate. We note here that when the distance between
objects is greater, results are less accurate. This is because ANNs are generated
for a small numbers of voxels, since MACZM accuracy is goodwith largemesh size,
as demonstrated by Yuen [1].

For 20-cm3 mesh size, Table 2 shows that the relative error has become high for
the heat-exchange factors between the slabs themselves and between slabs and rails.
Then a 10-cm3 mesh size is needed to compute the former two factors.

Because the computations of heat-exchange factors are independent from each
other, different mesh sizes can be considered for the computation of each category.
Looking more at the results and finding the highest accurate mesh size for each
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heat-exchange factor category, we easily obtain the multigrid configuration. Actually,
it is recognized that the heat-exchange factors between the walls and the steel slabs,
the rails, and the combustion volumes, as well as the heat-exchange factors between

Figure 6. The steel reheating furnace simulation in MACZM. (a) Mesh size D¼ 10 cm. (b) Mesh size

D¼ 20 cm. (c) Mesh size D¼ 40 cm. (d) Mesh size D¼ 80 cm (color figure available online).

Table 2. Comparison of simulation results of the steel reheating furnace

Exchange factor
CPU time (s) Relative error to MODRAY (%)

Mesh size D (cm) 10 20 40 80 10 20 40 80

Walls–steel slabs 77.45 6.26 0.36 0.01 3.17 4.13 19.31 —

Walls–rails 89.90 5.01 0.31 0.06 2.41 2.60 21.11 156.97

Rails–steel slabs 8.19 0.72 0.03 0.00 5.18 11.95 29.73 —

Steelslabs–steel slabs 2.42 0.22 0.05 0.00 1.24 19.44 47.05 —

Rails–rails 5.26 0.37 0.05 0.02 4.51 7.72 59.45 552.13

Walls–walls 375 18.72 0.92 0.06 — — — —

Burners–burners 32,459 527 5.90 0.08 4.28 4.83 6.29 13.49

Burners–steel slabs 731 21.96 1.34 0.00 6.31 7.58 — —

Burners–rails 1628 38.55 1.16 0.06 6.99 8.59 20.84 310.55

Walls–burners 6341 186 5.26 0.13 4.85 5.46 6.09 11.82

Total computation time 41,717 805 15.36 0.42
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the combustion volumes and the rails, can be taken from the case of voxel size 20 cm3.
Finally, the heat-exchange factors between the combustion volumes themselves and
between them and the walls, and the heat-exchange factors between the walls them-
selves, can be taken from the case of voxel size 40 cm3. The voxel size of 80 cm3is
not accurate for any cases because it doesnot represent well the furnace geometry,
as can be observed in Figure 6d. At the end, results of the multigrid are grouped in
Table 3, and Figure 7 shows an idea of what the multigrid results in. As we see in
Table 3, the multigrid has not only given accurate results, it has reduced the compu-
tation time efficiently. It avoids any waste in computation time. By adding compu-
tation times for all the exchange-factor computations, it was found that the
simulation ofpart of the furnace in MACZM takes 80 s, while the simulation of the
whole furnace takes 1,162 s.

Table 3. MACZM multigrid summary for the steel reheating furnace

Exchange factor

Mesh

size (cm)

Computation time,

simplified case (s)

Computation time,

whole furnace (s)

Relative error to

MODRAY (%)

Walls–steel slabs 20 0.36 6.00 4.13

Walls–rails 20 0.31 5.88 2.60

Rails–steel slabs 10 8.19 289.00 5.18

Steelslabs–steel slabs 10 2.42 251.21 1.24

Rails–rails 20 0.37 10.56 7.72

Walls–walls 40 0.92 134.32 —

Burners–burners 40 5.90 86.57 6.29

Burners–steel slabs 20 21.96 67.50 7.58

Burners–rails 20 38.55 403.40 8.59

Walls–burners 40 1.16 7.20 6.09

Total computation time 80.14 1,162

Figure 7. Multigrid configuration of the steel reheating furnace simulation (color figure available online).
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Table 4 shows comparisons of the computation times on the CPU and the GPU
for the whole furnace simulation. The column next to the GPU computation times
contains the ratio of the CPU time to the GPU time. The ratio is varying between
270 and 640, depending on the category of heat-exchange factors (surface–surface,
volume–surface or volume–volume). The GPU computation time is as well influenced
by the distance between the objects, because of the length of discrete lines. When the
distance is longer, the discrete line is taller and the mean absorption coefficient com-
putation slows up the GPU execution more than the CPU execution.

At the end, the total GPU computation time is 3.6 s, for the whole furnace. The
GPU time is then 320 times faster than the CPU time.

The computation time of one simulation being reduced to a few secondsmakes
the dynamic modeling possible.

CONCLUSIONS

A fast implementation of the multiple absorption coefficient zonal method
(MACZM) in three dimensions has been presented. First, efficient methods and
algorithms have been discussed for the main parts of the MACZM implementation.
The first part is the scene voxelization and the objects inside the scene. This part was
implemented using 3-D scan-conversion algorithms that have linear computation
complexity in terms of object size and short computation time. The second part is
the most important phase of the algorithm because it is the most time-consuming.
In this phase a mean absorption coefficient has to be computed over ray traversals,
taking into account the value of a mean absorption in each of the voxelsof a discrete
line corresponding to the continuous ray. In this article the 6-tripod line and the
6-parametric line algorithmswere adapted and compared. From the topological point
of view, both algorithms guarantee the containment property of the line. Hence, the
6-parametric line algorithm has been selected for its advantage in computation time.

A CUDA implementation of the method has then been described. The method
has been demonstrated to be massively parallel in a SIMD mode. An efficient sol-
ution for the optimization between the method parallelism (threading) and the use
of the memory resources available on the GPU was discussed. Speed-up achieved

Table 4. MACZM multigrid comparison between CPU and GPU times for the whole furnace simulation

Exchange factor

CPU computation

time (s)

GPU computation

time (s)

Computation time

ratio CPU=GPU

Walls–steel slabs 6.00 0.019 315

Walls–rails 5.88 0.018 326

Rails–steel slabs 289.00 0.996 290

Steelslabs–steel slabs 251.21 0.931 270

Rails–rails 10.56 0.033 320

Walls–walls 134.32 0.447 300

Burners–burners 86.57 0.130 665

Steelslabs – steel slabs 67.50 0.153 421

Burners–rails 403.40 0.85 474

Walls–burners 7.20 0.016 450

Total computation time 1,162 3.59 322
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on the GPU ranges from 300 to 600 times, using a NVIDIA Tesla C 1060 GPU and
anIntel Xeon CPU E5507 at 2.27GHz.

The MACZM has then been applied to a steel reheating furnace in order to
compute the radiative heat transfer inside the furnace. A multigrid approach has
been presented in order to minimize the computation times while keeping an accept-
able accuracy level for all radiativeheat-exchange factors. A computation time of few
seconds is achieved using the GPU implementation, with an average speed-up of 320
times. This short computation time will allow dynamic numerical real-time simula-
tion of the reheating furnace, and will guarantee the product quality (product of
the reheating furnace) and less energy consumption.

The speed of computations achieved using the MACZM will be very useful in
many applications whereradiative heat transfersneed to be calculated. The short
computation time and the accuracy of MACZM in nonisothermal, nonhomogeneous
media give the possibility of simulating new radiative problems as well as optimiza-
tion problems that were impossible before because of their long computation times.
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